mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
changed all rings from Type to Type _
This commit is contained in:
parent
7da199c95b
commit
a941cce12f
1 changed files with 7 additions and 7 deletions
|
@ -25,11 +25,11 @@ variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||||
|
|
||||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||||
|
|
||||||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
noncomputable def krullDim (R : Type _) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||||
|
|
||||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||||
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
lemma krullDim_def (R : Type _) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||||
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
lemma krullDim_def' (R : Type _) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||||
|
|
||||||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||||
|
|
||||||
|
@ -39,16 +39,16 @@ lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤
|
||||||
show J' < J
|
show J' < J
|
||||||
exact lt_of_lt_of_le hJ' I_le_J
|
exact lt_of_lt_of_le hJ' I_le_J
|
||||||
|
|
||||||
lemma krullDim_le_iff (R : Type) [CommRing R] (n : ℕ) :
|
lemma krullDim_le_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||||
|
|
||||||
lemma krullDim_le_iff' (R : Type) [CommRing R] (n : ℕ∞) :
|
lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
||||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||||
|
|
||||||
lemma le_krullDim_iff (R : Type) [CommRing R] (n : ℕ) :
|
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
|
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
|
||||||
|
|
||||||
lemma le_krullDim_iff' (R : Type) [CommRing R] (n : ℕ∞) :
|
lemma le_krullDim_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
||||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
|
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
|
||||||
|
|
||||||
@[simp]
|
@[simp]
|
||||||
|
|
Loading…
Reference in a new issue