Merge branch 'main' of github.com:GTBarkley/comm_alg into main

This commit is contained in:
leopoldmayer 2023-06-13 14:18:13 -07:00
commit 7da199c95b
3 changed files with 78 additions and 28 deletions

View file

@ -52,10 +52,10 @@ open Ideal
-- chain of primes
#check height
-- lemma height_ge_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
-- height 𝔭 ≥ n ↔ := sorry
lemma lt_height_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := sorry
lemma height_ge_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
rcases n with _ | n
. constructor <;> intro h <;> exfalso
@ -88,13 +88,38 @@ lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krull
lift (Ideal.krullDim R) to ℕ∞ using h with k
use k
lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
sorry
-- lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
-- Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
-- sorry
lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
-- lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
-- Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
constructor
. contrapose
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
apply PrimeSpectrum.instNonemptyPrimeSpectrum
. intro h
by_contra hneg
rw [not_isEmpty_iff] at hneg
rcases hneg with ⟨a, ha⟩
exact primeSpectrum_empty_of_subsingleton R ⟨a, ha⟩
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
unfold Ideal.krullDim
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
constructor <;> intro h
. rw [←not_nonempty_iff]
rintro ⟨a, ha⟩
-- specialize h ⟨a, ha⟩
tauto
. rw [h.forall_iff]
trivial
#check (sorry : False)

View file

@ -68,7 +68,31 @@ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) :=
#check height_le_krullDim
--some propositions that would be nice to be able to eventually
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := sorry
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
constructor
. contrapose
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
apply PrimeSpectrum.instNonemptyPrimeSpectrum
. intro h
by_contra hneg
rw [not_isEmpty_iff] at hneg
rcases hneg with ⟨a, ha⟩
exact primeSpectrum_empty_of_subsingleton ⟨a, ha⟩
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
unfold Ideal.krullDim
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
constructor <;> intro h
. rw [←not_nonempty_iff]
rintro ⟨a, ha⟩
specialize h ⟨a, ha⟩
tauto
. rw [h.forall_iff]
trivial
lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry

View file

@ -9,11 +9,6 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
namespace Ideal
example (x : Nat) : List.Chain' (· < ·) [x] := by
constructor
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
@ -52,30 +47,36 @@ lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
unfold krullDim
simp [field_prime_height_zero]
noncomputable
instance : CompleteLattice (WithBot ℕ∞) :=
inferInstanceAs <| CompleteLattice (WithBot (WithTop ))
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
unfold krullDim at h
simp [height] at h
by_contra x
rw [Ring.not_isField_iff_exists_prime] at x
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
have PgtBot : P > ⊥ := Ne.bot_lt h1
have pos_height : ↑(Set.chainHeight {J | J < P}) > 0 := by
have : ⊥ ∈ {J | J < P} := PgtBot
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
-- have : {J | J < P} ≠ ∅ := Set.Nonempty.ne_empty this
let P' : PrimeSpectrum D := PrimeSpectrum.mk P primeP
have h2 : P' ≠ ⊥ := by
by_contra a
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
contradiction
have PgtBot : P' > ⊥ := Ne.bot_lt h2
have pos_height : ¬ ↑(Set.chainHeight {J | J < P'}) ≤ 0 := by
have : ⊥ ∈ {J | J < P'} := PgtBot
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
rw [←Set.one_le_chainHeight_iff] at this
exact Iff.mp ENat.one_le_iff_pos this
have zero_height : ↑(Set.chainHeight {J | J < P}) = 0 := by
-- Probably need to use Sup_le or something here
sorry
have : ↑(Set.chainHeight {J | J < P}) ≠ 0 := Iff.mp pos_iff_ne_zero pos_height
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
have zero_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
rw [iSup_le_iff] at this
exact Iff.mp WithBot.coe_le_zero (this P')
contradiction
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
constructor
· exact isField.dim_zero
· intro fieldD
have : Field D := IsField.toField fieldD
-- Not exactly sure why this is failing
-- apply @dim_field_eq_zero D _
sorry
let h : Field D := IsField.toField fieldD
exact dim_field_eq_zero