mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
is there a def of graded submodule?
This commit is contained in:
parent
d4fef9c0e6
commit
06e0227828
1 changed files with 31 additions and 12 deletions
|
@ -58,11 +58,10 @@ section
|
|||
open GradedMonoid.GSmul
|
||||
open DirectSum
|
||||
|
||||
-- Definition of polynomail of type d
|
||||
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
||||
noncomputable def length ( A : Type _) (M : Type _)
|
||||
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||||
--theorem monotone_stabilizes_iff_noetherian :
|
||||
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
||||
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
||||
|
||||
-- Make instance of M_i being an R_0-module
|
||||
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
|
@ -103,14 +102,15 @@ end
|
|||
-- [DirectSum.GCommRing 𝒜]
|
||||
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
|
||||
|
||||
|
||||
def Ideal.IsHomogeneous' (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)]
|
||||
[DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ℤ ) ⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
|
||||
-- Definition(s) of homogeneous ideals
|
||||
def Ideal.IsHomogeneous' (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ℤ ) ⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
|
||||
def HomogeneousPrime (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
||||
def HomogeneousMax (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
||||
|
||||
-- Definition of polynomail of type d
|
||||
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
||||
--theorem monotone_stabilizes_iff_noetherian :
|
||||
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
||||
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
||||
|
||||
|
||||
end
|
||||
|
||||
|
@ -123,7 +123,6 @@ end
|
|||
|
||||
|
||||
|
||||
|
||||
-- @[BH, 4.1.3] when d ≥ 1
|
||||
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
||||
theorem hilbert_polynomial_ge1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
|
@ -154,19 +153,18 @@ theorem hilbert_polynomial_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [
|
|||
|
||||
|
||||
|
||||
-- @Existence of a chain of submodules of graded submoduels of f.g graded R-mod M
|
||||
-- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M
|
||||
lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
: true := by
|
||||
: ∃ (c : List (Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))), c.Chain' (· < ·) ∧ ∀ M ∈ c, Ture := by
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
-- @[BH, 1.5.6 (b)(ii)]
|
||||
-- An associated prime of a graded R-Mod M is graded
|
||||
lemma Associated_prime_of_graded_is_graded
|
||||
|
@ -178,4 +176,25 @@ lemma Associated_prime_of_graded_is_graded
|
|||
sorry
|
||||
|
||||
|
||||
-- instance gyhoiu
|
||||
-- (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
-- (p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
-- : (𝒫 : ℤ → Type _) [∀ i, AddCommGroup (𝒫 i)] [DirectSum.GCommRing 𝒫] → Gmodule (⊕ i, 𝒜 i) := by
|
||||
-- sorry
|
||||
|
||||
|
||||
instance sdfasdf
|
||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
: ∀ i, AddCommGroup (p i) := by
|
||||
sorry
|
||||
|
||||
-- @ Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
|
||||
instance Quotient_of_graded_is_graded
|
||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
: Gmodule (⨁ i, 𝒜 i) (⨁ i, (𝒜 i)⧸(p i)) := by
|
||||
sorry
|
||||
|
||||
|
||||
|
Loading…
Reference in a new issue