diff --git a/HilbertFunction.lean b/HilbertFunction.lean index 426caea..1c131e3 100644 --- a/HilbertFunction.lean +++ b/HilbertFunction.lean @@ -58,11 +58,10 @@ section open GradedMonoid.GSmul open DirectSum +-- Definition of polynomail of type d +def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly noncomputable def length ( A : Type _) (M : Type _) [CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤} ---theorem monotone_stabilizes_iff_noetherian : --- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by --- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] -- Make instance of M_i being an R_0-module instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] @@ -103,14 +102,15 @@ end -- [DirectSum.GCommRing 𝒜] -- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry - - def Ideal.IsHomogeneous' (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] - [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ℤ ) ⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I +-- Definition(s) of homogeneous ideals +def Ideal.IsHomogeneous' (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ℤ ) ⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I def HomogeneousPrime (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I) def HomogeneousMax (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I) --- Definition of polynomail of type d -def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly +--theorem monotone_stabilizes_iff_noetherian : +-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by +-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] + end @@ -123,7 +123,6 @@ end - -- @[BH, 4.1.3] when d ≥ 1 -- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1) theorem hilbert_polynomial_ge1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] @@ -154,19 +153,18 @@ theorem hilbert_polynomial_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [ --- @Existence of a chain of submodules of graded submoduels of f.g graded R-mod M +-- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) - : true := by + : ∃ (c : List (Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))), c.Chain' (· < ·) ∧ ∀ M ∈ c, Ture := by sorry - -- @[BH, 1.5.6 (b)(ii)] -- An associated prime of a graded R-Mod M is graded lemma Associated_prime_of_graded_is_graded @@ -178,4 +176,25 @@ lemma Associated_prime_of_graded_is_graded sorry +-- instance gyhoiu +-- (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] +-- (p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) +-- : (𝒫 : ℤ → Type _) [∀ i, AddCommGroup (𝒫 i)] [DirectSum.GCommRing 𝒫] → Gmodule (⊕ i, 𝒜 i) := by +-- sorry + +instance sdfasdf +(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] +(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) + : ∀ i, AddCommGroup (p i) := by + sorry + +-- @ Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component +instance Quotient_of_graded_is_graded +(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] +(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) + : Gmodule (⨁ i, 𝒜 i) (⨁ i, (𝒜 i)⧸(p i)) := by + sorry + + + \ No newline at end of file