Finish all the statements!!!

This commit is contained in:
chelseaandmadrid 2023-06-14 11:23:01 -07:00
parent 51b2589327
commit d4fef9c0e6

View file

@ -48,22 +48,23 @@ macro "obviously" : tactic =>
| fail "No, this is not obvious."))
-- @Definitions (to be classified)
section
open GradedMonoid.GSmul
open DirectSum
noncomputable def length ( A : Type _) (M : Type _)
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < }
def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I)
def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I)
--theorem monotone_stabilizes_iff_noetherian :
-- (∀ f : →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
open GradedMonoid.GSmul
open DirectSum
-- Make instance of M_i being an R_0-module
instance tada1 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (i : ) : SMul (𝒜 0) (𝓜 i)
where smul x y := @Eq.rec (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
@ -85,7 +86,9 @@ instance tada3 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGr
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
-- Definition of a Hilbert function of a graded module
section
noncomputable def hilbert_function (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
@ -95,16 +98,32 @@ noncomputable def dimensionring { A: Type _}
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A (( : Submodule A M).annihilator)) )
end
-- lemma graded_local (𝒜 : → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
-- [DirectSum.GCommRing 𝒜]
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
def Ideal.IsHomogeneous' (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)]
[DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ) ⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
def HomogeneousPrime (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
def HomogeneousMax (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
-- Definition of polynomail of type d
def PolyType (f : ) (d : ) := ∃ Poly : Polynomial , ∃ (N : ), ∀ (n : ), N ≤ n → f n = Polynomial.eval (n : ) Poly ∧ d = Polynomial.degree Poly
end
-- @[BH, 4.1.3] when d ≥ 1
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
theorem hilbert_polynomial_ge1 (d : ) (d1 : 1 ≤ d) (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
@ -118,6 +137,7 @@ theorem hilbert_polynomial_ge1 (d : ) (d1 : 1 ≤ d) (𝒜 : → Type _)
-- @[BH, 4.1.3] when d = 0
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
theorem hilbert_polynomial_0 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
@ -130,16 +150,9 @@ theorem hilbert_polynomial_0 (𝒜 : → Type _) (𝓜 : → Type _) [
sorry
-- @[BH, 1.5.6 (b)(ii)]
-- An associated prime of a graded R-Mod M is graded
lemma Associated_prime_of_graded_is_graded
(𝒜 : → Type _) (𝓜 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
: true := by
sorry
-- Ideal.IsHomogeneous 𝒜 p
-- @Existence of a chain of submodules of graded submoduels of f.g graded R-mod M
lemma Exist_chain_of_graded_submodules (𝒜 : → Type _) (𝓜 : → Type _)
@ -149,3 +162,20 @@ lemma Exist_chain_of_graded_submodules (𝒜 : → Type _) (𝓜 : → T
: true := by
sorry
-- @[BH, 1.5.6 (b)(ii)]
-- An associated prime of a graded R-Mod M is graded
lemma Associated_prime_of_graded_is_graded
(𝒜 : → Type _) (𝓜 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
: Ideal.IsHomogeneous' 𝒜 p := by
sorry