is there a def of graded submodule?

This commit is contained in:
chelseaandmadrid 2023-06-14 12:57:33 -07:00
parent d4fef9c0e6
commit 06e0227828

View file

@ -58,11 +58,10 @@ section
open GradedMonoid.GSmul
open DirectSum
-- Definition of polynomail of type d
def PolyType (f : ) (d : ) := ∃ Poly : Polynomial , ∃ (N : ), ∀ (n : ), N ≤ n → f n = Polynomial.eval (n : ) Poly ∧ d = Polynomial.degree Poly
noncomputable def length ( A : Type _) (M : Type _)
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < }
--theorem monotone_stabilizes_iff_noetherian :
-- (∀ f : →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
-- Make instance of M_i being an R_0-module
instance tada1 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
@ -103,14 +102,15 @@ end
-- [DirectSum.GCommRing 𝒜]
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
def Ideal.IsHomogeneous' (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)]
[DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ) ⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
-- Definition(s) of homogeneous ideals
def Ideal.IsHomogeneous' (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ) ⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
def HomogeneousPrime (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
def HomogeneousMax (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
-- Definition of polynomail of type d
def PolyType (f : ) (d : ) := ∃ Poly : Polynomial , ∃ (N : ), ∀ (n : ), N ≤ n → f n = Polynomial.eval (n : ) Poly ∧ d = Polynomial.degree Poly
--theorem monotone_stabilizes_iff_noetherian :
-- (∀ f : →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
end
@ -123,7 +123,6 @@ end
-- @[BH, 4.1.3] when d ≥ 1
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
theorem hilbert_polynomial_ge1 (d : ) (d1 : 1 ≤ d) (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
@ -154,19 +153,18 @@ theorem hilbert_polynomial_0 (𝒜 : → Type _) (𝓜 : → Type _) [
-- @Existence of a chain of submodules of graded submoduels of f.g graded R-mod M
-- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M
lemma Exist_chain_of_graded_submodules (𝒜 : → Type _) (𝓜 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
: true := by
: ∃ (c : List (Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))), c.Chain' (· < ·) ∧ ∀ M ∈ c, Ture := by
sorry
-- @[BH, 1.5.6 (b)(ii)]
-- An associated prime of a graded R-Mod M is graded
lemma Associated_prime_of_graded_is_graded
@ -178,4 +176,25 @@ lemma Associated_prime_of_graded_is_graded
sorry
-- instance gyhoiu
-- (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
-- (p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
-- : (𝒫 : → Type _) [∀ i, AddCommGroup (𝒫 i)] [DirectSum.GCommRing 𝒫] → Gmodule (⊕ i, 𝒜 i) := by
-- sorry
instance sdfasdf
(𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
: ∀ i, AddCommGroup (p i) := by
sorry
-- @ Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
instance Quotient_of_graded_is_graded
(𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
: Gmodule (⨁ i, 𝒜 i) (⨁ i, (𝒜 i)(p i)) := by
sorry