2023-06-11 23:41:21 -05:00
|
|
|
|
import Mathlib.RingTheory.Ideal.Basic
|
2023-06-12 16:14:39 -05:00
|
|
|
|
import Mathlib.RingTheory.JacobsonIdeal
|
2023-06-11 23:41:21 -05:00
|
|
|
|
import Mathlib.RingTheory.Noetherian
|
2023-06-12 12:13:44 -05:00
|
|
|
|
import Mathlib.Order.KrullDimension
|
2023-06-11 23:41:21 -05:00
|
|
|
|
import Mathlib.RingTheory.Artinian
|
|
|
|
|
import Mathlib.RingTheory.Ideal.Quotient
|
2023-06-12 22:03:43 -05:00
|
|
|
|
import Mathlib.RingTheory.Nilpotent
|
2023-06-11 23:41:21 -05:00
|
|
|
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
2023-06-12 16:14:39 -05:00
|
|
|
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
|
|
|
|
|
import Mathlib.Data.Finite.Defs
|
|
|
|
|
import Mathlib.Order.Height
|
|
|
|
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
|
|
|
|
import Mathlib.RingTheory.Localization.AtPrime
|
|
|
|
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
2023-06-12 22:03:43 -05:00
|
|
|
|
import Mathlib.Algebra.Ring.Pi
|
2023-06-12 22:48:42 -05:00
|
|
|
|
import Mathlib.Topology.NoetherianSpace
|
2023-06-11 23:41:21 -05:00
|
|
|
|
|
2023-06-12 16:14:39 -05:00
|
|
|
|
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
|
|
|
|
|
namespace Ideal
|
2023-06-12 12:13:44 -05:00
|
|
|
|
|
2023-06-12 16:14:39 -05:00
|
|
|
|
variable (R : Type _) [CommRing R] (I : PrimeSpectrum R)
|
2023-06-12 12:13:44 -05:00
|
|
|
|
|
2023-06-12 16:14:39 -05:00
|
|
|
|
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
|
|
|
|
|
|
|
|
|
noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
|
|
|
|
-- copy ends
|
|
|
|
|
|
|
|
|
|
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
2023-06-12 12:13:44 -05:00
|
|
|
|
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
2023-06-12 22:03:43 -05:00
|
|
|
|
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by sorry
|
2023-06-12 16:32:20 -05:00
|
|
|
|
|
2023-06-12 12:13:44 -05:00
|
|
|
|
|
|
|
|
|
#check IsNoetherianRing
|
|
|
|
|
|
2023-06-12 16:14:39 -05:00
|
|
|
|
#check krullDim
|
|
|
|
|
|
|
|
|
|
-- Repeats the definition of the length of a module by Monalisa
|
|
|
|
|
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
|
|
|
|
|
2023-06-12 22:48:42 -05:00
|
|
|
|
-- change the definition of length
|
|
|
|
|
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
2023-06-12 16:14:39 -05:00
|
|
|
|
|
|
|
|
|
#check length
|
|
|
|
|
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
2023-06-12 12:13:44 -05:00
|
|
|
|
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R R ≤ n := by sorry
|
2023-06-11 23:41:21 -05:00
|
|
|
|
|
2023-06-12 16:14:39 -05:00
|
|
|
|
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
|
|
|
|
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
|
|
|
|
|
|
|
|
|
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
2023-06-12 22:03:43 -05:00
|
|
|
|
lemma Jacobson_of_Artinian_is_nilpotent : IsArtinianRing R → IsNilpotent (Ideal.jacobson (⊤ : Ideal R)) := by sorry
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
|
|
|
|
-- if every element is nilpotent
|
|
|
|
|
namespace Ideal
|
|
|
|
|
class IsLocallyNilpotent (I : Ideal R) : Prop :=
|
|
|
|
|
h : ∀ x ∈ I, IsNilpotent x
|
|
|
|
|
|
|
|
|
|
end Ideal
|
|
|
|
|
|
|
|
|
|
#check Ideal.IsLocallyNilpotent
|
|
|
|
|
|
|
|
|
|
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
|
|
|
|
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
|
|
|
|
-- its maximal ideals. Also, all primes are maximal
|
|
|
|
|
|
|
|
|
|
lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
|
2023-06-12 22:48:42 -05:00
|
|
|
|
∧ Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) → Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
|
|
|
|
|
:= by sorry
|
|
|
|
|
-- Haven't finished this.
|
2023-06-12 16:14:39 -05:00
|
|
|
|
|
2023-06-12 22:48:42 -05:00
|
|
|
|
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
|
|
|
|
|
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
|
|
|
|
|
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by sorry
|
|
|
|
|
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
|
|
|
|
-- Every closed subset of a noetherian space is a finite union
|
|
|
|
|
-- of irreducible closed subsets.
|
2023-06-12 16:14:39 -05:00
|
|
|
|
|
|
|
|
|
|
2023-06-12 22:48:42 -05:00
|
|
|
|
-- Stacks Lemma 10.26.1 (Should already exists)
|
|
|
|
|
-- (1) The closure of a prime P is V(P)
|
|
|
|
|
-- (2) the irreducible closed subsets are V(P) for P prime
|
|
|
|
|
-- (3) the irreducible components are V(P) for P minimal prime
|
|
|
|
|
|
|
|
|
|
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals. If J ⊂ √I, then J ^ n ⊂ I for some n
|
|
|
|
|
|
2023-06-12 16:14:39 -05:00
|
|
|
|
-- how to use namespace
|
2023-06-11 23:41:21 -05:00
|
|
|
|
|
2023-06-12 16:14:39 -05:00
|
|
|
|
namespace something
|
2023-06-11 23:41:21 -05:00
|
|
|
|
|
2023-06-12 16:14:39 -05:00
|
|
|
|
end something
|
2023-06-11 23:41:21 -05:00
|
|
|
|
|
2023-06-12 16:14:39 -05:00
|
|
|
|
open something
|
2023-06-11 23:41:21 -05:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|