update lemmas

This commit is contained in:
poincare-duality 2023-06-12 14:14:39 -07:00
parent 3fac57ad02
commit cf0052a112

View file

@ -1,28 +1,60 @@
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.RingTheory.JacobsonIdeal
import Mathlib.RingTheory.Noetherian
import Mathlib.Order.KrullDimension
import Mathlib.RingTheory.Artinian
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
import Mathlib.Data.Finite.Defs
variable {R : Type _} [CommRing R]
import Mathlib.Order.Height
import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.Order.ConditionallyCompleteLattice.Basic
-- Repeats the definition by Monalisa
noncomputable def length : krullDim (Submodule _ _)
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
namespace Ideal
variable (R : Type _) [CommRing R] (I : PrimeSpectrum R)
-- The following is Stacks Lemma 10.60.5
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
-- copy ends
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
IsNoetherianRing R ∧ krull_dim R = 0 ↔ IsArtinianRing R := by
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by
sorry
#check IsNoetherianRing
-- The following is Stacks Lemma 10.53.6
#check krullDim
-- Repeats the definition of the length of a module by Monalisa
variable (M : Type _) [AddCommMonoid M] [Module R M]
noncomputable def length := krullDim (Submodule R M)
#check length
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : , length R R ≤ n := by sorry
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
lemma Jacobson_of_Artinian_is_nilpotent : Is
-- how to use namespace
namespace something
end something
open something