mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
add lemmas
This commit is contained in:
parent
a157174c65
commit
3b13474cec
1 changed files with 15 additions and 2 deletions
|
@ -1,12 +1,25 @@
|
|||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.RingTheory.Noetherian
|
||||
import Mathlib.Order.KrullDimension
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
|
||||
lemma dim_zero_Noetherian_is_Artinian (R : Type _) (IsNoetherianRing R) (krull_dim R = 0) : IsArtinianRing R := by sorry
|
||||
variable {R : Type _} [CommRing R]
|
||||
|
||||
-- Use Stacks project proof since it's broken into lemmas
|
||||
-- Repeats the definition by Monalisa
|
||||
noncomputable def length : krullDim (Submodule _ _)
|
||||
|
||||
|
||||
-- The following is Stacks Lemma 10.60.5
|
||||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ krull_dim R = 0 ↔ IsArtinianRing R := by
|
||||
sorry
|
||||
|
||||
#check IsNoetherianRing
|
||||
|
||||
-- The following is Stacks Lemma 10.53.6
|
||||
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R R ≤ n := by sorry
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue