comm_alg/PolyType.lean

319 lines
8.6 KiB
Text
Raw Permalink Normal View History

2023-06-14 01:05:45 -05:00
import Mathlib.Order.Height
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
-- Setting for "library_search"
set_option maxHeartbeats 0
macro "ls" : tactic => `(tactic|library_search)
-- New tactic "obviously"
macro "obviously" : tactic =>
`(tactic| (
first
| dsimp; simp; done; dbg_trace "it was dsimp simp"
| simp; done; dbg_trace "it was simp"
| tauto; done; dbg_trace "it was tauto"
| simp; tauto; done; dbg_trace "it was simp tauto"
| rfl; done; dbg_trace "it was rfl"
| norm_num; done; dbg_trace "it was norm_num"
| /-change (@Eq _ _);-/ linarith; done; dbg_trace "it was linarith"
-- | gcongr; done
| ring; done; dbg_trace "it was ring"
| trivial; done; dbg_trace "it was trivial"
-- | nlinarith; done
| fail "No, this is not obvious."))
-- Testing of Polynomial
section Polynomial
variable [Semiring ]
variable [Semiring ]
variable [Semiring ]
noncomputable section
#check Polynomial
#check Polynomial ()
#check Polynomial.eval
example (f : Polynomial ) (hf : f = Polynomial.C (1 : )) : Polynomial.eval 2 f = 1 := by
have : ∀ (q : ), Polynomial.eval q f = 1 := by
sorry
obviously
-- example (f : ) (hf : ∀ x, f x = x ^ 2) : Polynomial.eval 2 f = 4 := by
-- sorry
-- degree of a constant function is ⊥ (is this same as -1 ???)
#print Polynomial.degree_zero
def F : Polynomial := Polynomial.C (2 : )
#print F
#check F
#check Polynomial.degree F
#check Polynomial.degree 0
#check WithBot
-- #eval Polynomial.degree F
#check Polynomial.eval 1 F
example : Polynomial.eval (100 : ) F = (2 : ) := by
refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 F) 2) ?_
simp only [Rat.ofNat_num, Rat.ofNat_den]
rw [F]
simp
-- Treat polynomial f ∈ [X] as a function f :
#check CoeFun
end section
2023-06-14 16:44:43 -05:00
2023-06-14 01:05:45 -05:00
-- @[BH, 4.1.2]
-- All the polynomials are in [X], all the functions are considered as
noncomputable section
-- Polynomial type of degree d
@[simp]
def PolyType (f : ) (d : ) := ∃ Poly : Polynomial , ∃ (N : ), ∀ (n : ), N ≤ n → f n = Polynomial.eval (n : ) Poly ∧ d = Polynomial.degree Poly
section
-- structure PolyType (f : ) where
-- Poly : Polynomial
-- d :
-- N :
-- Poly_equal : ∀ n ∈ → f n = Polynomial.eval n : Poly
#check PolyType
example (f : ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by
unfold PolyType
sorry
-- use Polynomial.monomial (2 : ) (1 : )
-- have' := hf 0; ring_nf at this
-- exact this
end section
-- Δ operator (of d times)
@[simp]
def Δ : () → → ()
| f, 0 => f
| f, d + 1 => fun (n : ) ↦ (Δ f d) (n + 1) - (Δ f d) (n)
section
-- def Δ (f : ) (d : ) := fun (n : ) ↦ f (n + 1) - f n
-- def add' :
-- | 0, m => m
-- | n+1, m => (add' n m) + 1
-- #eval add' 5 10
#check Δ
def f (n : ) := n
#eval (Δ f 1) 100
-- #check (by (show_term unfold Δ) : Δ f 0=0)
end section
2023-06-14 22:51:45 -05:00
-- (NO NEED TO PROVE) Constant polynomial function = constant function
2023-06-14 01:05:45 -05:00
lemma Poly_constant (F : Polynomial ) (c : ) :
(F = Polynomial.C c) ↔ (∀ r : , (Polynomial.eval r F) = c) := by
constructor
· intro h
rintro r
refine Iff.mpr (Rat.ext_iff (Polynomial.eval r F) c) ?_
simp only [Rat.ofNat_num, Rat.ofNat_den]
rw [h]
simp
· sorry
2023-06-14 17:35:15 -05:00
2023-06-14 22:51:45 -05:00
2023-06-14 17:35:15 -05:00
-- Shifting doesn't change the polynomial type
lemma Poly_shifting (f : ) (g : ) (hf : PolyType f d) (s : ) (hfg : ∀ (n : ), f (n + s) = g (n)) : PolyType g d := by
2023-06-14 22:51:45 -05:00
simp only [PolyType]
rcases hf with ⟨F, hh⟩
rcases hh with ⟨N,ss⟩
2023-06-14 17:35:15 -05:00
sorry
2023-06-14 22:51:45 -05:00
2023-06-14 01:05:45 -05:00
-- PolyType 0 = constant function
lemma PolyType_0 (f : ) : (PolyType f 0) ↔ (∃ (c : ), ∃ (N : ), ∀ (n : ), (N ≤ n → f n = c) ∧ c ≠ 0) := by
constructor
· intro h
rcases h with ⟨Poly, hN⟩
rcases hN with ⟨N, hh⟩
have H1 := λ n hn => (hh n hn).left
have H2 := λ n hn => (hh n hn).right
clear hh
specialize H2 (N + 1)
have this1 : Polynomial.degree Poly = 0 := by
have : N ≤ N + 1 := by
dsimp
simp
tauto
have this2 : ∃ (c : ), Poly = Polynomial.C (c : ) := by
have HH : ∃ (c : ), Poly = Polynomial.C (c : ) := by
use Poly.coeff 0
apply Polynomial.eq_C_of_degree_eq_zero
exact this1
cases' HH with c HHH
have HHHH : ∃ (d : ), d = c := by
sorry
cases' HHHH with d H5
use d
rw [H5]
exact HHH
clear this1
rcases this2 with ⟨c, hthis2⟩
use c
use N
intro n
specialize H1 n
constructor
· intro HH1
have this3 : f n = Polynomial.eval (n : ) Poly := by
tauto
have this4 : Polynomial.eval (n : ) Poly = c := by
rw [hthis2]
dsimp
simp
have this5 : f n = (c : ) := by
rw [←this4, this3]
exact Iff.mp (Rat.coe_int_inj (f n) c) this5
· sorry
· intro h
rcases h with ⟨c, N, aaa⟩
let (Poly : Polynomial ) := Polynomial.C (c : )
use Poly
use N
intro n Nn
specialize aaa n
have this1 : c ≠ 0 → f n = c := by
tauto
constructor
· sorry
· sorry
-- apply Polynomial.degree_C c
2023-06-14 22:51:45 -05:00
-- Δ of 0 times preserve the function
lemma Δ_0 (f : ) : (Δ f 0) = f := by
tauto
2023-06-14 01:05:45 -05:00
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
lemma Δ_PolyType_d_to_PolyType_0 (f : ) (d : ): PolyType f d → PolyType (Δ f d) 0 := by
intro h
rcases h with ⟨Poly, hN⟩
rcases hN with ⟨N, hh⟩
have H1 := λ n hn => (hh n hn).left
have H2 := λ n hn => (hh n hn).right
clear hh
have HH2 : d = Polynomial.degree Poly := by
sorry
induction' d with d hd
· rw [PolyType_0]
sorry
· sorry
2023-06-14 22:51:45 -05:00
2023-06-14 01:05:45 -05:00
-- [BH, 4.1.2] (a) => (b)
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
lemma a_to_b (f : ) (d : ) : (∃ (c : ), ∃ (N : ), ∀ (n : ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) → PolyType f d := by
intro h
rcases h with ⟨c, N, hh⟩
have H1 := λ n => (hh n).left
have H2 := λ n => (hh n).right
clear hh
have H2 : c ≠ 0 := by
tauto
induction' d with d hd
· rw [PolyType_0]
use c
use N
tauto
· sorry
-- [BH, 4.1.2] (a) <= (b)
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
lemma b_to_a (f : ) (d : ) : PolyType f d → (∃ (c : ), ∃ (N : ), ∀ (n : ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) := by
intro h
have : PolyType (Δ f d) 0 := by
apply Δ_PolyType_d_to_PolyType_0
exact h
have this1 : (∃ (c : ), ∃ (N : ), ∀ (n : ), ((N ≤ n → (Δ f d) n = c) ∧ c ≠ 0)) := by
rw [←PolyType_0]
exact this
exact this1
end
2023-06-14 17:35:15 -05:00
2023-06-14 01:05:45 -05:00
-- @Additive lemma of length for a SES
2023-06-14 16:44:43 -05:00
-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0
2023-06-14 01:05:45 -05:00
section
-- variable {R M N : Type _} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
-- (f : M →[R] N)
open LinearMap
-- variable {R M : Type _} [CommRing R] [AddCommGroup M] [Module R M]
-- noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < }
-- Definitiion of the length of a module
noncomputable def length (R M : Type _) [CommRing R] [AddCommGroup M] [Module R M] := Set.chainHeight {M' : Submodule R M | M' < }
#check length
-- #eval length
-- @[ext]
-- structure SES (R : Type _) [CommRing R] where
-- A : Type _
-- B : Type _
-- C : Type _
-- f : A →ₗ[R] B
-- g : B →ₗ[R] C
-- left_exact : LinearMap.ker f = 0
-- middle_exact : LinearMap.range f = LinearMap.ker g
-- right_exact : LinearMap.range g = C
-- Definition of a SES (Short Exact Sequence)
-- @[ext]
structure SES {R A B C : Type _} [CommRing R] [AddCommGroup A] [AddCommGroup B]
[AddCommGroup C] [Module R A] [Module R B] [Module R C]
(f : A →ₗ[R] B) (g : B →ₗ[R] C)
where
left_exact : LinearMap.ker f = ⊥
middle_exact : LinearMap.range f = LinearMap.ker g
right_exact : LinearMap.range g =
#check SES.right_exact
#check SES
-- Additive lemma
lemma length_Additive (R A B C : Type _) [CommRing R] [AddCommGroup A] [AddCommGroup B] [AddCommGroup C] [Module R A] [Module R B] [Module R C]
(f : A →ₗ[R] B) (g : B →ₗ[R] C)
: (SES f g) → ((length R A) + (length R C) = (length R B)) := by
intro h
rcases h with ⟨left_exact, middle_exact, right_exact⟩
sorry
end section