import Mathlib.Order.Height import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic -- Setting for "library_search" set_option maxHeartbeats 0 macro "ls" : tactic => `(tactic|library_search) -- New tactic "obviously" macro "obviously" : tactic => `(tactic| ( first | dsimp; simp; done; dbg_trace "it was dsimp simp" | simp; done; dbg_trace "it was simp" | tauto; done; dbg_trace "it was tauto" | simp; tauto; done; dbg_trace "it was simp tauto" | rfl; done; dbg_trace "it was rfl" | norm_num; done; dbg_trace "it was norm_num" | /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith" -- | gcongr; done | ring; done; dbg_trace "it was ring" | trivial; done; dbg_trace "it was trivial" -- | nlinarith; done | fail "No, this is not obvious.")) -- Testing of Polynomial section Polynomial variable [Semiring ℕ] variable [Semiring ℤ] variable [Semiring ℚ] noncomputable section #check Polynomial #check Polynomial (ℚ) #check Polynomial.eval example (f : Polynomial ℚ) (hf : f = Polynomial.C (1 : ℚ)) : Polynomial.eval 2 f = 1 := by have : ∀ (q : ℚ), Polynomial.eval q f = 1 := by sorry obviously -- example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : Polynomial.eval 2 f = 4 := by -- sorry -- degree of a constant function is ⊥ (is this same as -1 ???) #print Polynomial.degree_zero def F : Polynomial ℚ := Polynomial.C (2 : ℚ) #print F #check F #check Polynomial.degree F #check Polynomial.degree 0 #check WithBot ℕ -- #eval Polynomial.degree F #check Polynomial.eval 1 F example : Polynomial.eval (100 : ℚ) F = (2 : ℚ) := by refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 F) 2) ?_ simp only [Rat.ofNat_num, Rat.ofNat_den] rw [F] simp -- Treat polynomial f ∈ ℚ[X] as a function f : ℚ → ℚ #check CoeFun end section -- @[BH, 4.1.2] -- All the polynomials are in ℚ[X], all the functions are considered as ℤ → ℤ noncomputable section -- Polynomial type of degree d @[simp] def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly section -- structure PolyType (f : ℤ → ℤ) where -- Poly : Polynomial ℤ -- d : -- N : ℤ -- Poly_equal : ∀ n ∈ ℤ → f n = Polynomial.eval n : ℤ Poly #check PolyType example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by unfold PolyType sorry -- use Polynomial.monomial (2 : ℤ) (1 : ℤ) -- have' := hf 0; ring_nf at this -- exact this end section -- Δ operator (of d times) @[simp] def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ) | f, 0 => f | f, d + 1 => fun (n : ℤ) ↦ (Δ f d) (n + 1) - (Δ f d) (n) section -- def Δ (f : ℤ → ℤ) (d : ℕ) := fun (n : ℤ) ↦ f (n + 1) - f n -- def add' : ℕ → ℕ → ℕ -- | 0, m => m -- | n+1, m => (add' n m) + 1 -- #eval add' 5 10 #check Δ def f (n : ℤ) := n #eval (Δ f 1) 100 -- #check (by (show_term unfold Δ) : Δ f 0=0) end section -- (NO NEED TO PROVE) Constant polynomial function = constant function lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) : (F = Polynomial.C c) ↔ (∀ r : ℚ, (Polynomial.eval r F) = c) := by constructor · intro h rintro r refine Iff.mpr (Rat.ext_iff (Polynomial.eval r F) c) ?_ simp only [Rat.ofNat_num, Rat.ofNat_den] rw [h] simp · sorry -- Shifting doesn't change the polynomial type lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by simp only [PolyType] rcases hf with ⟨F, hh⟩ rcases hh with ⟨N,ss⟩ sorry -- PolyType 0 = constant function lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), (N ≤ n → f n = c) ∧ c ≠ 0) := by constructor · intro h rcases h with ⟨Poly, hN⟩ rcases hN with ⟨N, hh⟩ have H1 := λ n hn => (hh n hn).left have H2 := λ n hn => (hh n hn).right clear hh specialize H2 (N + 1) have this1 : Polynomial.degree Poly = 0 := by have : N ≤ N + 1 := by dsimp simp tauto have this2 : ∃ (c : ℤ), Poly = Polynomial.C (c : ℚ) := by have HH : ∃ (c : ℚ), Poly = Polynomial.C (c : ℚ) := by use Poly.coeff 0 apply Polynomial.eq_C_of_degree_eq_zero exact this1 cases' HH with c HHH have HHHH : ∃ (d : ℤ), d = c := by sorry cases' HHHH with d H5 use d rw [H5] exact HHH clear this1 rcases this2 with ⟨c, hthis2⟩ use c use N intro n specialize H1 n constructor · intro HH1 have this3 : f n = Polynomial.eval (n : ℚ) Poly := by tauto have this4 : Polynomial.eval (n : ℚ) Poly = c := by rw [hthis2] dsimp simp have this5 : f n = (c : ℚ) := by rw [←this4, this3] exact Iff.mp (Rat.coe_int_inj (f n) c) this5 · sorry · intro h rcases h with ⟨c, N, aaa⟩ let (Poly : Polynomial ℚ) := Polynomial.C (c : ℚ) use Poly use N intro n Nn specialize aaa n have this1 : c ≠ 0 → f n = c := by tauto constructor · sorry · sorry -- apply Polynomial.degree_C c -- Δ of 0 times preserve the function lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by tauto -- Δ of d times maps polynomial of degree d to polynomial of degree 0 lemma Δ_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := by intro h rcases h with ⟨Poly, hN⟩ rcases hN with ⟨N, hh⟩ have H1 := λ n hn => (hh n hn).left have H2 := λ n hn => (hh n hn).right clear hh have HH2 : d = Polynomial.degree Poly := by sorry induction' d with d hd · rw [PolyType_0] sorry · sorry -- [BH, 4.1.2] (a) => (b) -- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) → PolyType f d := by intro h rcases h with ⟨c, N, hh⟩ have H1 := λ n => (hh n).left have H2 := λ n => (hh n).right clear hh have H2 : c ≠ 0 := by tauto induction' d with d hd · rw [PolyType_0] use c use N tauto · sorry -- [BH, 4.1.2] (a) <= (b) -- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0 lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) := by intro h have : PolyType (Δ f d) 0 := by apply Δ_PolyType_d_to_PolyType_0 exact h have this1 : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) n = c) ∧ c ≠ 0)) := by rw [←PolyType_0] exact this exact this1 end -- @Additive lemma of length for a SES -- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0 section -- variable {R M N : Type _} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] -- (f : M →[R] N) open LinearMap -- variable {R M : Type _} [CommRing R] [AddCommGroup M] [Module R M] -- noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤} -- Definitiion of the length of a module noncomputable def length (R M : Type _) [CommRing R] [AddCommGroup M] [Module R M] := Set.chainHeight {M' : Submodule R M | M' < ⊤} #check length ℤ ℤ -- #eval length ℤ ℤ -- @[ext] -- structure SES (R : Type _) [CommRing R] where -- A : Type _ -- B : Type _ -- C : Type _ -- f : A →ₗ[R] B -- g : B →ₗ[R] C -- left_exact : LinearMap.ker f = 0 -- middle_exact : LinearMap.range f = LinearMap.ker g -- right_exact : LinearMap.range g = C -- Definition of a SES (Short Exact Sequence) -- @[ext] structure SES {R A B C : Type _} [CommRing R] [AddCommGroup A] [AddCommGroup B] [AddCommGroup C] [Module R A] [Module R B] [Module R C] (f : A →ₗ[R] B) (g : B →ₗ[R] C) where left_exact : LinearMap.ker f = ⊥ middle_exact : LinearMap.range f = LinearMap.ker g right_exact : LinearMap.range g = ⊤ #check SES.right_exact #check SES -- Additive lemma lemma length_Additive (R A B C : Type _) [CommRing R] [AddCommGroup A] [AddCommGroup B] [AddCommGroup C] [Module R A] [Module R B] [Module R C] (f : A →ₗ[R] B) (g : B →ₗ[R] C) : (SES f g) → ((length R A) + (length R C) = (length R B)) := by intro h rcases h with ⟨left_exact, middle_exact, right_exact⟩ sorry end section