mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Added comments to everything
This commit is contained in:
parent
08b1fd3e7a
commit
900bf12da2
2 changed files with 17 additions and 43 deletions
|
@ -29,8 +29,6 @@ macro "obviously" : tactic =>
|
|||
|
||||
|
||||
|
||||
|
||||
|
||||
-- @Definitions (to be classified)
|
||||
section
|
||||
open GradedMonoid.GSmul
|
||||
|
@ -81,15 +79,20 @@ end
|
|||
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
|
||||
|
||||
|
||||
-- Definition(s) of homogeneous ideals
|
||||
-- Definition of homogeneous ideal
|
||||
def Ideal.IsHomogeneous' (𝒜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ℤ )
|
||||
⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
|
||||
|
||||
-- Definition of homogeneous prime ideal
|
||||
def HomogeneousPrime (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
||||
|
||||
-- Definition of homogeneous maximal ideal
|
||||
def HomogeneousMax (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
||||
|
||||
|
||||
|
||||
--theorem monotone_stabilizes_iff_noetherian :
|
||||
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
||||
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
||||
|
@ -99,12 +102,6 @@ end
|
|||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
-- @[BH, 4.1.3] when d ≥ 1
|
||||
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
||||
theorem hilbert_polynomial_ge1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
|
@ -165,14 +162,7 @@ lemma Associated_prime_of_graded_is_graded
|
|||
-- sorry
|
||||
|
||||
|
||||
-- instance sdfasdf
|
||||
-- (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
-- (p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
-- : ∀ i, AddCommGroup (p i) := by
|
||||
-- sorry
|
||||
|
||||
|
||||
|
||||
-- Each component of a graded ring is an additive subgroup
|
||||
def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (i : ℤ) : AddSubgroup (𝒜 i) := by
|
||||
|
@ -186,10 +176,12 @@ instance Quotient_of_graded_is_graded
|
|||
: DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||
sorry
|
||||
|
||||
-- @Graded submodule
|
||||
instance Graded_submodule
|
||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
: DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||
sorry
|
||||
|
||||
|
||||
-- -- @Graded submodule
|
||||
-- instance Graded_submodule
|
||||
-- (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
-- (p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
-- : DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||
-- sorry
|
||||
|
||||
|
|
|
@ -1,24 +1,5 @@
|
|||
import Mathlib
|
||||
import Mathlib.Algebra.MonoidAlgebra.Basic
|
||||
import Mathlib.Data.Finset.Sort
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.Order.KrullDimension
|
||||
import Mathlib.Order.JordanHolder
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.LinearAlgebra.Finsupp
|
||||
import Mathlib.RingTheory.GradedAlgebra.Basic
|
||||
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
||||
import Mathlib.Algebra.Module.GradedModule
|
||||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||
import Mathlib.RingTheory.Noetherian
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.Algebra.Module.GradedModule
|
||||
import Mathlib.RingTheory.Noetherian
|
||||
import Mathlib.RingTheory.Finiteness
|
||||
import Mathlib.RingTheory.Ideal.Operations
|
||||
|
||||
-- Setting for "library_search"
|
||||
set_option maxHeartbeats 0
|
||||
|
@ -86,6 +67,7 @@ example : Polynomial.eval (100 : ℚ) F = (2 : ℚ) := by
|
|||
|
||||
end section
|
||||
|
||||
|
||||
-- @[BH, 4.1.2]
|
||||
-- All the polynomials are in ℚ[X], all the functions are considered as ℤ → ℤ
|
||||
noncomputable section
|
||||
|
@ -247,6 +229,7 @@ lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃
|
|||
end
|
||||
|
||||
-- @Additive lemma of length for a SES
|
||||
-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0
|
||||
section
|
||||
-- variable {R M N : Type _} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
|
||||
-- (f : M →[R] N)
|
||||
|
@ -305,4 +288,3 @@ end section
|
|||
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue