lean-talk-sp24/LeanTalkSP24/infinitely_many_primes.lean

239 lines
6.8 KiB
Text
Raw Normal View History

2024-02-06 01:19:20 -06:00
import Mathlib.Data.Nat.Prime
import Mathlib.Algebra.BigOperators.Order
import Mathlib.Tactic
import Mathlib.Tactic.IntervalCases
open BigOperators
theorem two_le {m : } (h0 : m ≠ 0) (h1 : m ≠ 1) : 2 ≤ m := by
have : m > 0 := Nat.pos_of_ne_zero h0
have : m >= 1 := this
have h1 : 1 ≠ m := Ne.symm h1
change ¬_ = _ at h1
have : m > 1 := Nat.lt_of_le_of_ne this h1
exact this
theorem exists_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ p : Nat, p.Prime ∧ p n := by
by_cases np : n.Prime
· use n, np
induction' n using Nat.strong_induction_on with n ih
rw [Nat.prime_def_lt] at np
push_neg at np
rcases np h with ⟨m, mltn, mdvdn, mne1⟩
have : m ≠ 0 := by
intro mz
rw [mz, zero_dvd_iff] at mdvdn
linarith
have mgt2 : 2 ≤ m := two_le this mne1
by_cases mp : m.Prime
· use m, mp
. rcases ih m mltn mgt2 mp with ⟨p, pp, pdvd⟩
use p, pp
apply pdvd.trans mdvdn
theorem primes_infinite : ∀ n, ∃ p > n, Nat.Prime p := by
intro n
have : 2 ≤ Nat.factorial (n + 1) + 1 := by
apply Nat.succ_le_succ
apply Nat.succ_le_of_lt
apply Nat.factorial_pos
rcases exists_prime_factor this with ⟨p, pp, pdvd⟩
refine' ⟨p, _, pp⟩
show p > n
by_contra ple
push_neg at ple
have : p Nat.factorial (n + 1) := by
apply Nat.dvd_factorial
apply pp.pos
linarith
have : p 1 := by
convert Nat.dvd_sub' pdvd this
simp
show False
have ple1 : p ≤ 1 := Nat.le_of_dvd (Nat.lt_succ_self 0) this
have plt1 : p > 1 := pp.one_lt
linarith
open Finset
section
variable {α : Type _} [DecidableEq α] (r s t : Finset α)
example : r ∩ (s t) ⊆ r ∩ s r ∩ t := by
rw [subset_iff]
intro x
rw [mem_inter, mem_union, mem_union, mem_inter, mem_inter]
tauto
example : r ∩ (s t) ⊆ r ∩ s r ∩ t := by
simp [subset_iff]
intro x
tauto
example : r ∩ s r ∩ t ⊆ r ∩ (s t) := by
simp [subset_iff]
intro x
tauto
example : r ∩ s r ∩ t = r ∩ (s t) := by
ext x
simp
tauto
end
theorem _root_.Nat.Prime.eq_of_dvd_of_prime {p q : }
(prime_p : Nat.Prime p) (prime_q : Nat.Prime q) (h : p q) :
p = q := by
cases prime_q.eq_one_or_self_of_dvd _ h
· linarith [prime_p.two_le]
assumption
theorem mem_of_dvd_prod_primes {s : Finset } {p : } (prime_p : p.Prime) :
(∀ n ∈ s, Nat.Prime n) → (p ∏ n in s, n) → p ∈ s := by
intro h₀ h₁
induction' s using Finset.induction_on with a s ans ih
· simp at h₁
linarith [prime_p.two_le]
simp [Finset.prod_insert ans, prime_p.dvd_mul] at h₀ h₁
rw [mem_insert]
cases' h₁ with h₁ h₁
· left
exact prime_p.eq_of_dvd_of_prime h₀.1 h₁
right
exact ih h₀.2 h₁
theorem primes_infinite' : ∀ s : Finset Nat, ∃ p, Nat.Prime p ∧ p ∉ s := by
intro s
by_contra h
push_neg at h
set s' := s.filter Nat.Prime with s'_def
have mem_s' : ∀ {n : }, n ∈ s' ↔ n.Prime := by
intro n
simp [s'_def]
apply h
have : 2 ≤ (∏ i in s', i) + 1 := by
apply Nat.succ_le_succ
apply Nat.succ_le_of_lt
apply Finset.prod_pos
intro n ns'
apply (mem_s'.mp ns').pos
rcases exists_prime_factor this with ⟨p, pp, pdvd⟩
have : p ∏ i in s', i := by
apply dvd_prod_of_mem
rw [mem_s']
apply pp
have : p 1 := by
convert Nat.dvd_sub' pdvd this
simp
show False
have := Nat.le_of_dvd zero_lt_one this
linarith [pp.two_le]
theorem bounded_of_ex_finset (Q : → Prop) :
(∃ s : Finset , ∀ k, Q k → k ∈ s) → ∃ n, ∀ k, Q k → k < n := by
rintro ⟨s, hs⟩
use s.sup id + 1
intro k Qk
apply Nat.lt_succ_of_le
show id k ≤ s.sup id
apply le_sup (hs k Qk)
theorem ex_finset_of_bounded (Q : → Prop) [DecidablePred Q] :
(∃ n, ∀ k, Q k → k ≤ n) → ∃ s : Finset , ∀ k, Q k ↔ k ∈ s := by
rintro ⟨n, hn⟩
use (range (n + 1)).filter Q
intro k
simp [Nat.lt_succ_iff]
exact hn k
theorem mod_4_eq_3_or_mod_4_eq_3 {m n : } (h : m * n % 4 = 3) : m % 4 = 3 n % 4 = 3 := by
revert h
rw [Nat.mul_mod]
have : m % 4 < 4 := Nat.mod_lt m (by norm_num)
interval_cases hm : m % 4 <;> simp [hm]
have : n % 4 < 4 := Nat.mod_lt n (by norm_num)
interval_cases hn : n % 4 <;> simp [hn]
theorem two_le_of_mod_4_eq_3 {n : } (h : n % 4 = 3) : 2 ≤ n := by
apply two_le <;>
· intro neq
rw [neq] at h
norm_num at h
theorem aux {m n : } (h₀ : m n) (h₁ : 2 ≤ m) (h₂ : m < n) : n / m n ∧ n / m < n := by
constructor
· exact Nat.div_dvd_of_dvd h₀
exact Nat.div_lt_self (lt_of_le_of_lt (zero_le _) h₂) h₁
theorem exists_prime_factor_mod_4_eq_3 {n : Nat} (h : n % 4 = 3) :
∃ p : Nat, p.Prime ∧ p n ∧ p % 4 = 3 := by
by_cases np : n.Prime
· use n
induction' n using Nat.strong_induction_on with n ih
rw [Nat.prime_def_lt] at np
push_neg at np
rcases np (two_le_of_mod_4_eq_3 h) with ⟨m, mltn, mdvdn, mne1⟩
have mge2 : 2 ≤ m := by
apply two_le _ mne1
intro mz
rw [mz, zero_dvd_iff] at mdvdn
linarith
have neq : m * (n / m) = n := Nat.mul_div_cancel' mdvdn
have : m % 4 = 3 n / m % 4 = 3 := by
apply mod_4_eq_3_or_mod_4_eq_3
rw [neq, h]
cases' this with h1 h1
· by_cases mp : m.Prime
· use m
rcases ih m mltn h1 mp with ⟨p, pp, pdvd, p4eq⟩
use p
exact ⟨pp, pdvd.trans mdvdn, p4eq⟩
obtain ⟨nmdvdn, nmltn⟩ := aux mdvdn mge2 mltn
by_cases nmp : (n / m).Prime
· use n / m
rcases ih (n / m) nmltn h1 nmp with ⟨p, pp, pdvd, p4eq⟩
use p
exact ⟨pp, pdvd.trans nmdvdn, p4eq⟩
theorem primes_mod_4_eq_3_infinite : ∀ n, ∃ p > n, Nat.Prime p ∧ p % 4 = 3 := by
by_contra h
push_neg at h
cases' h with n hn
have : ∃ s : Finset Nat, ∀ p : , p.Prime ∧ p % 4 = 3 ↔ p ∈ s := by
apply ex_finset_of_bounded
use n
contrapose! hn
rcases hn with ⟨p, ⟨pp, p4⟩, pltn⟩
exact ⟨p, pltn, pp, p4⟩
cases' this with s hs
have h₁ : ((4 * ∏ i in erase s 3, i) + 3) % 4 = 3 := by
rw [add_comm, Nat.add_mul_mod_self_left]
norm_num
rcases exists_prime_factor_mod_4_eq_3 h₁ with ⟨p, pp, pdvd, p4eq⟩
have ps : p ∈ s := by
rw [← hs p]
exact ⟨pp, p4eq⟩
have pne3 : p ≠ 3 := by
intro peq
rw [peq, ← Nat.dvd_add_iff_left (dvd_refl 3)] at pdvd
rw [Nat.prime_three.dvd_mul] at pdvd
norm_num at pdvd
have : 3 ∈ s.erase 3 := by
apply mem_of_dvd_prod_primes Nat.prime_three _ pdvd
intro n
simp [← hs n]
tauto
simp at this
have : p 4 * ∏ i in erase s 3, i := by
apply dvd_trans _ (dvd_mul_left _ _)
apply dvd_prod_of_mem
simp
constructor <;> assumption
have : p 3 := by
convert Nat.dvd_sub' pdvd this
simp
have : p = 3 := by
apply pp.eq_of_dvd_of_prime Nat.prime_three this
contradiction