mirror of
https://github.com/SinTan1729/lean-talk-sp24.git
synced 2024-12-25 05:18:37 -06:00
new: Added the more advanced examples
This commit is contained in:
parent
eb673e816c
commit
5b38350326
3 changed files with 384 additions and 0 deletions
|
@ -1,3 +1,5 @@
|
|||
-- This module serves as the root of the `«LeanTalkSP24»` library.
|
||||
-- Import modules here that should be built as part of the library.
|
||||
import «LeanTalkSP24».basics
|
||||
import «LeanTalkSP24».infinitely_many_primes
|
||||
import «LeanTalkSP24».polynomial_over_field_dim_one
|
||||
|
|
238
LeanTalkSP24/infinitely_many_primes.lean
Normal file
238
LeanTalkSP24/infinitely_many_primes.lean
Normal file
|
@ -0,0 +1,238 @@
|
|||
import Mathlib.Data.Nat.Prime
|
||||
import Mathlib.Algebra.BigOperators.Order
|
||||
import Mathlib.Tactic
|
||||
import Mathlib.Tactic.IntervalCases
|
||||
|
||||
open BigOperators
|
||||
|
||||
theorem two_le {m : ℕ} (h0 : m ≠ 0) (h1 : m ≠ 1) : 2 ≤ m := by
|
||||
have : m > 0 := Nat.pos_of_ne_zero h0
|
||||
have : m >= 1 := this
|
||||
have h1 : 1 ≠ m := Ne.symm h1
|
||||
change ¬_ = _ at h1
|
||||
have : m > 1 := Nat.lt_of_le_of_ne this h1
|
||||
exact this
|
||||
|
||||
theorem exists_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ p : Nat, p.Prime ∧ p ∣ n := by
|
||||
by_cases np : n.Prime
|
||||
· use n, np
|
||||
induction' n using Nat.strong_induction_on with n ih
|
||||
rw [Nat.prime_def_lt] at np
|
||||
push_neg at np
|
||||
rcases np h with ⟨m, mltn, mdvdn, mne1⟩
|
||||
have : m ≠ 0 := by
|
||||
intro mz
|
||||
rw [mz, zero_dvd_iff] at mdvdn
|
||||
linarith
|
||||
have mgt2 : 2 ≤ m := two_le this mne1
|
||||
by_cases mp : m.Prime
|
||||
· use m, mp
|
||||
. rcases ih m mltn mgt2 mp with ⟨p, pp, pdvd⟩
|
||||
use p, pp
|
||||
apply pdvd.trans mdvdn
|
||||
|
||||
theorem primes_infinite : ∀ n, ∃ p > n, Nat.Prime p := by
|
||||
intro n
|
||||
have : 2 ≤ Nat.factorial (n + 1) + 1 := by
|
||||
apply Nat.succ_le_succ
|
||||
apply Nat.succ_le_of_lt
|
||||
apply Nat.factorial_pos
|
||||
rcases exists_prime_factor this with ⟨p, pp, pdvd⟩
|
||||
refine' ⟨p, _, pp⟩
|
||||
show p > n
|
||||
by_contra ple
|
||||
push_neg at ple
|
||||
have : p ∣ Nat.factorial (n + 1) := by
|
||||
apply Nat.dvd_factorial
|
||||
apply pp.pos
|
||||
linarith
|
||||
have : p ∣ 1 := by
|
||||
convert Nat.dvd_sub' pdvd this
|
||||
simp
|
||||
show False
|
||||
have ple1 : p ≤ 1 := Nat.le_of_dvd (Nat.lt_succ_self 0) this
|
||||
have plt1 : p > 1 := pp.one_lt
|
||||
linarith
|
||||
|
||||
open Finset
|
||||
|
||||
section
|
||||
variable {α : Type _} [DecidableEq α] (r s t : Finset α)
|
||||
|
||||
example : r ∩ (s ∪ t) ⊆ r ∩ s ∪ r ∩ t := by
|
||||
rw [subset_iff]
|
||||
intro x
|
||||
rw [mem_inter, mem_union, mem_union, mem_inter, mem_inter]
|
||||
tauto
|
||||
|
||||
example : r ∩ (s ∪ t) ⊆ r ∩ s ∪ r ∩ t := by
|
||||
simp [subset_iff]
|
||||
intro x
|
||||
tauto
|
||||
|
||||
example : r ∩ s ∪ r ∩ t ⊆ r ∩ (s ∪ t) := by
|
||||
simp [subset_iff]
|
||||
intro x
|
||||
tauto
|
||||
|
||||
example : r ∩ s ∪ r ∩ t = r ∩ (s ∪ t) := by
|
||||
ext x
|
||||
simp
|
||||
tauto
|
||||
|
||||
end
|
||||
|
||||
theorem _root_.Nat.Prime.eq_of_dvd_of_prime {p q : ℕ}
|
||||
(prime_p : Nat.Prime p) (prime_q : Nat.Prime q) (h : p ∣ q) :
|
||||
p = q := by
|
||||
cases prime_q.eq_one_or_self_of_dvd _ h
|
||||
· linarith [prime_p.two_le]
|
||||
assumption
|
||||
|
||||
theorem mem_of_dvd_prod_primes {s : Finset ℕ} {p : ℕ} (prime_p : p.Prime) :
|
||||
(∀ n ∈ s, Nat.Prime n) → (p ∣ ∏ n in s, n) → p ∈ s := by
|
||||
intro h₀ h₁
|
||||
induction' s using Finset.induction_on with a s ans ih
|
||||
· simp at h₁
|
||||
linarith [prime_p.two_le]
|
||||
simp [Finset.prod_insert ans, prime_p.dvd_mul] at h₀ h₁
|
||||
rw [mem_insert]
|
||||
cases' h₁ with h₁ h₁
|
||||
· left
|
||||
exact prime_p.eq_of_dvd_of_prime h₀.1 h₁
|
||||
right
|
||||
exact ih h₀.2 h₁
|
||||
|
||||
theorem primes_infinite' : ∀ s : Finset Nat, ∃ p, Nat.Prime p ∧ p ∉ s := by
|
||||
intro s
|
||||
by_contra h
|
||||
push_neg at h
|
||||
set s' := s.filter Nat.Prime with s'_def
|
||||
have mem_s' : ∀ {n : ℕ}, n ∈ s' ↔ n.Prime := by
|
||||
intro n
|
||||
simp [s'_def]
|
||||
apply h
|
||||
have : 2 ≤ (∏ i in s', i) + 1 := by
|
||||
apply Nat.succ_le_succ
|
||||
apply Nat.succ_le_of_lt
|
||||
apply Finset.prod_pos
|
||||
intro n ns'
|
||||
apply (mem_s'.mp ns').pos
|
||||
rcases exists_prime_factor this with ⟨p, pp, pdvd⟩
|
||||
have : p ∣ ∏ i in s', i := by
|
||||
apply dvd_prod_of_mem
|
||||
rw [mem_s']
|
||||
apply pp
|
||||
have : p ∣ 1 := by
|
||||
convert Nat.dvd_sub' pdvd this
|
||||
simp
|
||||
show False
|
||||
have := Nat.le_of_dvd zero_lt_one this
|
||||
linarith [pp.two_le]
|
||||
|
||||
theorem bounded_of_ex_finset (Q : ℕ → Prop) :
|
||||
(∃ s : Finset ℕ, ∀ k, Q k → k ∈ s) → ∃ n, ∀ k, Q k → k < n := by
|
||||
rintro ⟨s, hs⟩
|
||||
use s.sup id + 1
|
||||
intro k Qk
|
||||
apply Nat.lt_succ_of_le
|
||||
show id k ≤ s.sup id
|
||||
apply le_sup (hs k Qk)
|
||||
|
||||
theorem ex_finset_of_bounded (Q : ℕ → Prop) [DecidablePred Q] :
|
||||
(∃ n, ∀ k, Q k → k ≤ n) → ∃ s : Finset ℕ, ∀ k, Q k ↔ k ∈ s := by
|
||||
rintro ⟨n, hn⟩
|
||||
use (range (n + 1)).filter Q
|
||||
intro k
|
||||
simp [Nat.lt_succ_iff]
|
||||
exact hn k
|
||||
|
||||
theorem mod_4_eq_3_or_mod_4_eq_3 {m n : ℕ} (h : m * n % 4 = 3) : m % 4 = 3 ∨ n % 4 = 3 := by
|
||||
revert h
|
||||
rw [Nat.mul_mod]
|
||||
have : m % 4 < 4 := Nat.mod_lt m (by norm_num)
|
||||
interval_cases hm : m % 4 <;> simp [hm]
|
||||
have : n % 4 < 4 := Nat.mod_lt n (by norm_num)
|
||||
interval_cases hn : n % 4 <;> simp [hn]
|
||||
|
||||
theorem two_le_of_mod_4_eq_3 {n : ℕ} (h : n % 4 = 3) : 2 ≤ n := by
|
||||
apply two_le <;>
|
||||
· intro neq
|
||||
rw [neq] at h
|
||||
norm_num at h
|
||||
|
||||
theorem aux {m n : ℕ} (h₀ : m ∣ n) (h₁ : 2 ≤ m) (h₂ : m < n) : n / m ∣ n ∧ n / m < n := by
|
||||
constructor
|
||||
· exact Nat.div_dvd_of_dvd h₀
|
||||
exact Nat.div_lt_self (lt_of_le_of_lt (zero_le _) h₂) h₁
|
||||
|
||||
theorem exists_prime_factor_mod_4_eq_3 {n : Nat} (h : n % 4 = 3) :
|
||||
∃ p : Nat, p.Prime ∧ p ∣ n ∧ p % 4 = 3 := by
|
||||
by_cases np : n.Prime
|
||||
· use n
|
||||
induction' n using Nat.strong_induction_on with n ih
|
||||
rw [Nat.prime_def_lt] at np
|
||||
push_neg at np
|
||||
rcases np (two_le_of_mod_4_eq_3 h) with ⟨m, mltn, mdvdn, mne1⟩
|
||||
have mge2 : 2 ≤ m := by
|
||||
apply two_le _ mne1
|
||||
intro mz
|
||||
rw [mz, zero_dvd_iff] at mdvdn
|
||||
linarith
|
||||
have neq : m * (n / m) = n := Nat.mul_div_cancel' mdvdn
|
||||
have : m % 4 = 3 ∨ n / m % 4 = 3 := by
|
||||
apply mod_4_eq_3_or_mod_4_eq_3
|
||||
rw [neq, h]
|
||||
cases' this with h1 h1
|
||||
· by_cases mp : m.Prime
|
||||
· use m
|
||||
rcases ih m mltn h1 mp with ⟨p, pp, pdvd, p4eq⟩
|
||||
use p
|
||||
exact ⟨pp, pdvd.trans mdvdn, p4eq⟩
|
||||
obtain ⟨nmdvdn, nmltn⟩ := aux mdvdn mge2 mltn
|
||||
by_cases nmp : (n / m).Prime
|
||||
· use n / m
|
||||
rcases ih (n / m) nmltn h1 nmp with ⟨p, pp, pdvd, p4eq⟩
|
||||
use p
|
||||
exact ⟨pp, pdvd.trans nmdvdn, p4eq⟩
|
||||
|
||||
theorem primes_mod_4_eq_3_infinite : ∀ n, ∃ p > n, Nat.Prime p ∧ p % 4 = 3 := by
|
||||
by_contra h
|
||||
push_neg at h
|
||||
cases' h with n hn
|
||||
have : ∃ s : Finset Nat, ∀ p : ℕ, p.Prime ∧ p % 4 = 3 ↔ p ∈ s := by
|
||||
apply ex_finset_of_bounded
|
||||
use n
|
||||
contrapose! hn
|
||||
rcases hn with ⟨p, ⟨pp, p4⟩, pltn⟩
|
||||
exact ⟨p, pltn, pp, p4⟩
|
||||
cases' this with s hs
|
||||
have h₁ : ((4 * ∏ i in erase s 3, i) + 3) % 4 = 3 := by
|
||||
rw [add_comm, Nat.add_mul_mod_self_left]
|
||||
norm_num
|
||||
rcases exists_prime_factor_mod_4_eq_3 h₁ with ⟨p, pp, pdvd, p4eq⟩
|
||||
have ps : p ∈ s := by
|
||||
rw [← hs p]
|
||||
exact ⟨pp, p4eq⟩
|
||||
have pne3 : p ≠ 3 := by
|
||||
intro peq
|
||||
rw [peq, ← Nat.dvd_add_iff_left (dvd_refl 3)] at pdvd
|
||||
rw [Nat.prime_three.dvd_mul] at pdvd
|
||||
norm_num at pdvd
|
||||
have : 3 ∈ s.erase 3 := by
|
||||
apply mem_of_dvd_prod_primes Nat.prime_three _ pdvd
|
||||
intro n
|
||||
simp [← hs n]
|
||||
tauto
|
||||
simp at this
|
||||
have : p ∣ 4 * ∏ i in erase s 3, i := by
|
||||
apply dvd_trans _ (dvd_mul_left _ _)
|
||||
apply dvd_prod_of_mem
|
||||
simp
|
||||
constructor <;> assumption
|
||||
have : p ∣ 3 := by
|
||||
convert Nat.dvd_sub' pdvd this
|
||||
simp
|
||||
have : p = 3 := by
|
||||
apply pp.eq_of_dvd_of_prime Nat.prime_three this
|
||||
contradiction
|
144
LeanTalkSP24/polynomial_over_field_dim_one.lean
Normal file
144
LeanTalkSP24/polynomial_over_field_dim_one.lean
Normal file
|
@ -0,0 +1,144 @@
|
|||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
|
||||
namespace Ideal
|
||||
|
||||
namespace Ideal
|
||||
open LocalRing
|
||||
|
||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||
|
||||
/-- Definitions -/
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||
noncomputable def krullDim (R : Type _) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
noncomputable def codimension (J : Ideal R) : WithBot ℕ∞ := ⨅ I ∈ {I : PrimeSpectrum R | J ≤ I.asIdeal}, height I
|
||||
|
||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||
lemma krullDim_def (R : Type _) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||
lemma krullDim_def' (R : Type _) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||
|
||||
/-- A lattice structure on WithBot ℕ∞. -/
|
||||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||
|
||||
/-- Singleton sets have chainHeight 1 -/
|
||||
lemma singleton_chainHeight_one {α : Type _} {x : α} [Preorder α] : Set.chainHeight {x} = 1 := by
|
||||
have le : Set.chainHeight {x} ≤ 1 := by
|
||||
unfold Set.chainHeight
|
||||
simp only [iSup_le_iff, Nat.cast_le_one]
|
||||
intro L h
|
||||
unfold Set.subchain at h
|
||||
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at h
|
||||
rcases L with (_ | ⟨a,L⟩)
|
||||
. simp only [List.length_nil, zero_le]
|
||||
rcases L with (_ | ⟨b,L⟩)
|
||||
. simp only [List.length_singleton, le_refl]
|
||||
simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h
|
||||
rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩
|
||||
exact absurd h1 (lt_irrefl _)
|
||||
suffices : Set.chainHeight {x} > 0
|
||||
· change _ < _ at this
|
||||
rw [←ENat.one_le_iff_pos] at this
|
||||
apply le_antisymm <;> trivial
|
||||
by_contra x
|
||||
simp only [gt_iff_lt, not_lt, nonpos_iff_eq_zero, Set.chainHeight_eq_zero_iff, Set.singleton_ne_empty] at x
|
||||
|
||||
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
|
||||
@[simp]
|
||||
lemma height_zero_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = 0 ↔ P = ⊥ := by
|
||||
constructor
|
||||
· intro h
|
||||
unfold height at h
|
||||
simp only [Set.chainHeight_eq_zero_iff] at h
|
||||
apply eq_bot_of_minimal
|
||||
intro I
|
||||
by_contra x
|
||||
have : I ∈ {J | J < P} := x
|
||||
rw [h] at this
|
||||
contradiction
|
||||
· intro h
|
||||
unfold height
|
||||
simp only [bot_eq_zero', Set.chainHeight_eq_zero_iff]
|
||||
by_contra spec
|
||||
change _ ≠ _ at spec
|
||||
rw [← Set.nonempty_iff_ne_empty] at spec
|
||||
obtain ⟨J, JlP : J < P⟩ := spec
|
||||
have JneP : J ≠ P := ne_of_lt JlP
|
||||
rw [h, ←bot_lt_iff_ne_bot, ←h] at JneP
|
||||
have := not_lt_of_lt JneP
|
||||
contradiction
|
||||
|
||||
/-- The ring of polynomials over a field has dimension one. -/
|
||||
-- It's the exact same lemma as in krull.lean, added ' to avoid conflict
|
||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||
rw [le_antisymm_iff]
|
||||
let X := @Polynomial.X K _
|
||||
constructor
|
||||
· unfold krullDim
|
||||
apply @iSup_le (WithBot ℕ∞) _ _ _ _
|
||||
intro I
|
||||
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
|
||||
by_cases h: I = ⊥
|
||||
· rw [← height_zero_iff_bot] at h
|
||||
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||
rw [h]
|
||||
exact bot_le
|
||||
· push_neg at h
|
||||
have : I.asIdeal ≠ ⊥ := by
|
||||
by_contra a
|
||||
have : I = ⊥ := PrimeSpectrum.ext I ⊥ a
|
||||
contradiction
|
||||
have maxI := IsPrime.to_maximal_ideal this
|
||||
have sngletn : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
|
||||
intro P
|
||||
constructor
|
||||
· intro H
|
||||
simp only [Set.mem_setOf_eq] at H
|
||||
by_contra x
|
||||
push_neg at x
|
||||
have : P.asIdeal ≠ ⊥ := by
|
||||
by_contra a
|
||||
have : P = ⊥ := PrimeSpectrum.ext P ⊥ a
|
||||
contradiction
|
||||
have maxP := IsPrime.to_maximal_ideal this
|
||||
have IneTop := IsMaximal.ne_top maxI
|
||||
have : P ≤ I := le_of_lt H
|
||||
rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this
|
||||
have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this
|
||||
have : P = I := PrimeSpectrum.ext P I this
|
||||
replace H : P ≠ I := ne_of_lt H
|
||||
contradiction
|
||||
· intro pBot
|
||||
simp only [Set.mem_setOf_eq, pBot]
|
||||
exact lt_of_le_of_ne bot_le h.symm
|
||||
replace sngletn : {J | J < I} = {⊥} := Set.ext sngletn
|
||||
unfold height
|
||||
rw [sngletn]
|
||||
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||
exact le_of_eq singleton_chainHeight_one
|
||||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||
· obtain ⟨I, h⟩ := this
|
||||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||
exact le_trans h this
|
||||
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
|
||||
have : IsPrime (span {X}) := by
|
||||
refine (span_singleton_prime ?hp).mpr primeX
|
||||
exact Polynomial.X_ne_zero
|
||||
let P := PrimeSpectrum.mk (span {X}) this
|
||||
unfold height
|
||||
use P
|
||||
have : ⊥ ∈ {J | J < P} := by
|
||||
simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot]
|
||||
suffices : P.asIdeal ≠ ⊥
|
||||
· by_contra x
|
||||
rw [PrimeSpectrum.ext_iff] at x
|
||||
contradiction
|
||||
by_contra x
|
||||
simp only [span_singleton_eq_bot] at x
|
||||
have := @Polynomial.X_ne_zero K _ _
|
||||
contradiction
|
||||
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
|
||||
rwa [←Set.one_le_chainHeight_iff, ←WithBot.one_le_coe] at this
|
Loading…
Reference in a new issue