comm_alg/CommAlg/krull.lean
2023-06-15 19:34:20 -07:00

342 lines
No EOL
13 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.RingTheory.Ideal.Operations
import Mathlib.RingTheory.FiniteType
import Mathlib.Order.Height
import Mathlib.RingTheory.PrincipalIdealDomain
import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Ideal.MinimalPrime
import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.ConditionallyCompleteLattice.Basic
/- This file contains the definitions of height of an ideal, and the krull
dimension of a commutative ring.
There are also sorried statements of many of the theorems that would be
really nice to prove.
I'm imagining for this file to ultimately contain basic API for height and
krull dimension, and the theorems will probably end up other files,
depending on how long the proofs are, and what extra API needs to be
developed.
-/
lemma lt_bot_eq_WithBot_bot [PartialOrder α] [OrderBot α] {a : WithBot α} (h : a < (⊥ : α)) : a = ⊥ := by
cases a
. rfl
. cases h.not_le (WithBot.coe_le_coe.2 bot_le)
namespace Ideal
open LocalRing
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
noncomputable def krullDim (R : Type _) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
lemma krullDim_def (R : Type _) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
lemma krullDim_def' (R : Type _) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := by
apply Set.chainHeight_mono
intro J' hJ'
show J' < J
exact lt_of_lt_of_le hJ' I_le_J
lemma krullDim_le_iff (R : Type _) [CommRing R] (n : ) :
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
@[simp]
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ) :
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by
constructor
· unfold krullDim
intro H
by_contra H1
push_neg at H1
by_cases n ≤ 0
· rw [Nat.le_zero] at h
rw [h] at H H1
have : ∀ (I : PrimeSpectrum R), ↑(height I) = (⊥ : WithBot ℕ∞) := by
intro I
specialize H1 I
exact lt_bot_eq_WithBot_bot H1
rw [←iSup_eq_bot] at this
have := le_of_le_of_eq H this
rw [le_bot_iff] at this
exact WithBot.coe_ne_bot this
· push_neg at h
have : (n: ℕ∞) > 0 := Nat.cast_pos.mpr h
replace H1 : ∀ (I : PrimeSpectrum R), height I ≤ n - 1 := by
intro I
specialize H1 I
apply ENat.le_of_lt_add_one
rw [←ENat.coe_one, ←ENat.coe_sub, ←ENat.coe_add, tsub_add_cancel_of_le]
exact WithBot.coe_lt_coe.mp H1
exact h
replace H1 : ∀ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) ≤ ↑(n - 1):=
fun _ ↦ (WithBot.coe_le rfl).mpr (H1 _)
rw [←iSup_le_iff] at H1
have : ((n : ℕ∞) : WithBot ℕ∞) ≤ (((n - 1 : ) : ℕ∞) : WithBot ℕ∞) := le_trans H H1
norm_cast at this
have that : n - 1 < n := by refine Nat.sub_lt h (by norm_num)
apply lt_irrefl (n-1) (trans that this)
· rintro ⟨I, h⟩
have : height I ≤ krullDim R := by apply height_le_krullDim
exact le_trans h this
lemma le_krullDim_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
/-- The Krull dimension of a local ring is the height of its maximal ideal. -/
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
apply le_antisymm
. rw [krullDim_le_iff']
intro I
apply WithBot.coe_mono
apply height_le_of_le
apply le_maximalIdeal
exact I.2.1
. simp only [height_le_krullDim]
/-- The height of a prime `𝔭` is greater than `n` if and only if there is a chain of primes less than `𝔭`
with length `n + 1`. -/
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
rcases n with _ | n
. constructor <;> intro h <;> exfalso
. exact (not_le.mpr h) le_top
. tauto
have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by
symm
show (n + 1 ≤ m ↔ _ )
apply ENat.add_one_le_iff
exact ENat.coe_ne_top _
rw [this]
unfold Ideal.height
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ) = (_:ℕ∞))
rw [{J | J < 𝔭}.le_chainHeight_iff]
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
constructor <;> rintro ⟨c, hc⟩ <;> use c
. tauto
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
norm_cast at hc
tauto
/-- Form of `lt_height_iff''` for rewriting with the height coerced to `WithBot ℕ∞`. -/
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
show (_ < _) ↔ _
rw [WithBot.coe_lt_coe]
exact lt_height_iff'
#check height_le_krullDim
--some propositions that would be nice to be able to eventually
/-- The prime spectrum of the zero ring is empty. -/
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
/-- A CommRing has empty prime spectrum if and only if it is the zero ring. -/
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
constructor
. contrapose
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
apply PrimeSpectrum.instNonemptyPrimeSpectrum
. intro h
by_contra hneg
rw [not_isEmpty_iff] at hneg
rcases hneg with ⟨a, ha⟩
exact primeSpectrum_empty_of_subsingleton ⟨a, ha⟩
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
unfold Ideal.krullDim
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
constructor <;> intro h
. rw [←not_nonempty_iff]
rintro ⟨a, ha⟩
specialize h ⟨a, ha⟩
tauto
. rw [h.forall_iff]
trivial
/-- Nonzero rings have Krull dimension in ℕ∞ -/
lemma krullDim_nonneg_of_nontrivial (R : Type _) [CommRing R] [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
lift (Ideal.krullDim R) to ℕ∞ using h with k
use k
/-- An ideal which is less than a prime is not a maximal ideal. -/
lemma not_maximal_of_lt_prime {p : Ideal R} {q : Ideal R} (hq : IsPrime q) (h : p < q) : ¬IsMaximal p := by
intro hp
apply IsPrime.ne_top hq
apply (IsCoatom.lt_iff hp.out).mp
exact h
/-- Krull dimension is ≤ 0 if and only if all primes are maximal. -/
lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
show ((_ : WithBot ℕ∞) ≤ (0 : )) ↔ _
rw [krullDim_le_iff R 0]
constructor <;> intro h I
. contrapose! h
have ⟨𝔪, h𝔪⟩ := I.asIdeal.exists_le_maximal (IsPrime.ne_top I.IsPrime)
let 𝔪p := (⟨𝔪, IsMaximal.isPrime h𝔪.1⟩ : PrimeSpectrum R)
have hstrct : I < 𝔪p := by
apply lt_of_le_of_ne h𝔪.2
intro hcontr
rw [hcontr] at h
exact h h𝔪.1
use 𝔪p
show (_ : WithBot ℕ∞) > (0 : ℕ∞)
rw [lt_height_iff'']
use [I]
constructor
. exact List.chain'_singleton _
. constructor
. intro I' hI'
simp at hI'
rwa [hI']
. simp
. contrapose! h
change (_ : WithBot ℕ∞) > (0 : ℕ∞) at h
rw [lt_height_iff''] at h
obtain ⟨c, _, hc2, hc3⟩ := h
norm_cast at hc3
rw [List.length_eq_one] at hc3
obtain ⟨𝔮, h𝔮⟩ := hc3
use 𝔮
specialize hc2 𝔮 (h𝔮 ▸ (List.mem_singleton.mpr rfl))
apply not_maximal_of_lt_prime I.IsPrime
exact hc2
/-- For a nonzero ring, Krull dimension is 0 if and only if all primes are maximal. -/
lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
rw [←dim_le_zero_iff]
obtain ⟨n, hn⟩ := krullDim_nonneg_of_nontrivial R
have : n ≥ 0 := zero_le n
change _ ≤ _ at this
rw [←WithBot.coe_le_coe,←hn] at this
change (0 : WithBot ℕ∞) ≤ _ at this
constructor <;> intro h'
. rw [h']
. exact le_antisymm h' this
/-- In a field, the unique prime ideal is the zero ideal. -/
@[simp]
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
constructor
· intro primeP
obtain T := eq_bot_or_top P
have : ¬P = := IsPrime.ne_top primeP
tauto
· intro botP
rw [botP]
exact bot_prime
/-- In a field, all primes have height 0. -/
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
unfold height
simp
by_contra spec
change _ ≠ _ at spec
rw [← Set.nonempty_iff_ne_empty] at spec
obtain ⟨J, JlP : J < P⟩ := spec
have P0 : IsPrime P.asIdeal := P.IsPrime
have J0 : IsPrime J.asIdeal := J.IsPrime
rw [field_prime_bot] at P0 J0
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
have : J = P := PrimeSpectrum.ext J P this
have : J ≠ P := ne_of_lt JlP
contradiction
/-- The Krull dimension of a field is 0. -/
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
unfold krullDim
simp [field_prime_height_zero]
/-- A domain with Krull dimension 0 is a field. -/
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
by_contra x
rw [Ring.not_isField_iff_exists_prime] at x
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
let P' : PrimeSpectrum D := PrimeSpectrum.mk P primeP
have h2 : P' ≠ ⊥ := by
by_contra a
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
contradiction
have pos_height : ¬ (height P') ≤ 0 := by
have : ⊥ ∈ {J | J < P'} := Ne.bot_lt h2
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
unfold height
rw [←Set.one_le_chainHeight_iff] at this
exact not_le_of_gt (ENat.one_le_iff_pos.mp this)
have nonpos_height : height P' ≤ 0 := by
have := height_le_krullDim P'
rw [h] at this
aesop
contradiction
/-- A domain has Krull dimension 0 if and only if it is a field. -/
lemma domain_dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
constructor
· exact domain_dim_zero.isField
· intro fieldD
let h : Field D := fieldD.toField
exact dim_field_eq_zero
#check Ring.DimensionLEOne
-- This lemma is false!
lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
/-- The converse of this is false, because the definition of "dimension ≤ 1" in mathlib
applies only to dimension zero rings and domains of dimension 1. -/
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
show _ → ((_ : WithBot ℕ∞) ≤ (1 : ))
rw [krullDim_le_iff R 1]
intro H p
apply le_of_not_gt
intro h
rcases (lt_height_iff''.mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
norm_cast at hc3
rw [List.chain'_iff_get] at hc1
specialize hc1 0 (by rw [hc3]; simp)
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
specialize hc2 q1 (List.get_mem _ _ _)
change q0.asIdeal < q1.asIdeal at hc1
have q1nbot := Trans.trans (bot_le : ⊥ ≤ q0.asIdeal) hc1
specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime
exact (not_maximal_of_lt_prime p.IsPrime hc2) H
/-- The Krull dimension of a PID is at most 1. -/
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 := by
rw [dim_le_one_iff]
exact Ring.DimensionLEOne.principal_ideal_ring R
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry
-- lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
-- krullDim R + 1 = krullDim (Polynomial R) := sorry
lemma krull_height_theorem [Nontrivial R] [IsNoetherianRing R] (P: PrimeSpectrum R) (S: Finset R)
(h: P.asIdeal ∈ Ideal.minimalPrimes (Ideal.span S)) : height P ≤ S.card := by
sorry
lemma dim_mvPolynomial [Field K] (n : ) : krullDim (MvPolynomial (Fin n) K) = n := sorry
lemma height_eq_dim_localization :
height I = krullDim (Localization.AtPrime I.asIdeal) := sorry
lemma dim_quotient_le_dim : height I + krullDim (R I.asIdeal) ≤ krullDim R := sorry
lemma height_add_dim_quotient_le_dim : height I + krullDim (R I.asIdeal) ≤ krullDim R := sorry