mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
Minor changes
This commit is contained in:
parent
01bce563a5
commit
e9fbb1a521
1 changed files with 2 additions and 2 deletions
|
@ -86,7 +86,7 @@ lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
|||
fun _ ↦ (WithBot.coe_le rfl).mpr (H1 _)
|
||||
rw [←iSup_le_iff] at H1
|
||||
have : ((n : ℕ∞) : WithBot ℕ∞) ≤ (((n - 1 : ℕ) : ℕ∞) : WithBot ℕ∞) := le_trans H H1
|
||||
norm_cast at this
|
||||
norm_cast at this
|
||||
have that : n - 1 < n := by refine Nat.sub_lt h (by norm_num)
|
||||
apply lt_irrefl (n-1) (trans that this)
|
||||
· rintro ⟨I, h⟩
|
||||
|
@ -278,7 +278,7 @@ lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim
|
|||
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
||||
unfold height
|
||||
rw [←Set.one_le_chainHeight_iff] at this
|
||||
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
||||
exact not_le_of_gt (ENat.one_le_iff_pos.mp this)
|
||||
have nonpos_height : height P' ≤ 0 := by
|
||||
have := height_le_krullDim P'
|
||||
rw [h] at this
|
||||
|
|
Loading…
Reference in a new issue