mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
328 lines
No EOL
11 KiB
Text
328 lines
No EOL
11 KiB
Text
import Mathlib.Order.Height
|
||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||
|
||
-- Setting for "library_search"
|
||
set_option maxHeartbeats 0
|
||
macro "ls" : tactic => `(tactic|library_search)
|
||
|
||
-- New tactic "obviously"
|
||
macro "obviously" : tactic =>
|
||
`(tactic| (
|
||
first
|
||
| dsimp; simp; done; dbg_trace "it was dsimp simp"
|
||
| simp; done; dbg_trace "it was simp"
|
||
| tauto; done; dbg_trace "it was tauto"
|
||
| simp; tauto; done; dbg_trace "it was simp tauto"
|
||
| rfl; done; dbg_trace "it was rfl"
|
||
| norm_num; done; dbg_trace "it was norm_num"
|
||
| /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith"
|
||
-- | gcongr; done
|
||
| ring; done; dbg_trace "it was ring"
|
||
| trivial; done; dbg_trace "it was trivial"
|
||
| aesop; done; dbg_trace "it was aesop"
|
||
| assumption; done; dbg_trace "it was assumption"
|
||
-- | nlinarith; done
|
||
| fail "No, this is not obvious."))
|
||
|
||
|
||
-- Testing of Polynomial
|
||
section Polynomial
|
||
noncomputable section
|
||
#check Polynomial
|
||
#check Polynomial (ℚ)
|
||
#check Polynomial.eval
|
||
|
||
|
||
example (f : Polynomial ℚ) (hf : f = Polynomial.C (1 : ℚ)) : Polynomial.eval 2 f = 1 := by
|
||
have : ∀ (q : ℚ), Polynomial.eval q f = 1 := by
|
||
sorry
|
||
obviously
|
||
|
||
-- example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : Polynomial.eval 2 f = 4 := by
|
||
-- sorry
|
||
|
||
-- degree of a constant function is ⊥ (is this same as -1 ???)
|
||
#print Polynomial.degree_zero
|
||
|
||
def FF : Polynomial ℚ := Polynomial.C (2 : ℚ)
|
||
#print FF
|
||
#check FF
|
||
#check Polynomial.degree FF
|
||
#check Polynomial.degree 0
|
||
#check WithBot ℕ
|
||
-- #eval Polynomial.degree FF
|
||
#check Polynomial.eval 1 FF
|
||
example : Polynomial.eval (100 : ℚ) FF = (2 : ℚ) := by
|
||
refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 FF) 2) ?_
|
||
simp only [Rat.ofNat_num, Rat.ofNat_den]
|
||
rw [FF]
|
||
simp
|
||
sorry
|
||
-- Treat polynomial f ∈ ℚ[X] as a function f : ℚ → ℚ
|
||
#check CoeFun
|
||
|
||
#check Polynomial.eval₂
|
||
#check Polynomial.comp
|
||
#check Polynomial.eval₂.comp
|
||
#check Polynomial.card_roots
|
||
|
||
|
||
end section
|
||
|
||
|
||
|
||
|
||
-- @[BH, 4.1.2]
|
||
|
||
-- All the polynomials are in ℚ[X], all the functions are considered as ℤ → ℤ
|
||
noncomputable section
|
||
-- Polynomial type of degree d
|
||
@[simp]
|
||
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly) ∧ d = Polynomial.degree Poly
|
||
section
|
||
-- structure PolyType (f : ℤ → ℤ) where
|
||
-- Poly : Polynomial ℤ
|
||
-- d :
|
||
-- N : ℤ
|
||
-- Poly_equal : ∀ n ∈ ℤ → f n = Polynomial.eval n : ℤ Poly
|
||
|
||
#check PolyType
|
||
|
||
example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by
|
||
unfold PolyType
|
||
sorry
|
||
-- use Polynomial.monomial (2 : ℤ) (1 : ℤ)
|
||
-- have' := hf 0; ring_nf at this
|
||
-- exact this
|
||
|
||
end section
|
||
|
||
-- Δ operator (of d times)
|
||
@[simp]
|
||
def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ)
|
||
| f, 0 => f
|
||
| f, d + 1 => fun (n : ℤ) ↦ (Δ f d) (n + 1) - (Δ f d) (n)
|
||
section
|
||
-- def Δ (f : ℤ → ℤ) (d : ℕ) := fun (n : ℤ) ↦ f (n + 1) - f n
|
||
-- def add' : ℕ → ℕ → ℕ
|
||
-- | 0, m => m
|
||
-- | n+1, m => (add' n m) + 1
|
||
-- #eval add' 5 10
|
||
#check Δ
|
||
def fff (n : ℤ) := n
|
||
#eval (Δ fff 1) 100
|
||
-- #check (by (show_term unfold Δ) : Δ f 0=0)
|
||
end section
|
||
|
||
|
||
|
||
-- (NO need to prove another direction) Constant polynomial function = constant function
|
||
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
||
(F = Polynomial.C (c : ℚ)) ↔ (∀ r : ℚ, (Polynomial.eval r F) = (c : ℚ)) := by
|
||
constructor
|
||
· intro h
|
||
rintro r
|
||
refine Iff.mpr (Rat.ext_iff (Polynomial.eval r F) c) ?_
|
||
simp only [Rat.ofNat_num, Rat.ofNat_den]
|
||
rw [h]
|
||
simp
|
||
· sorry
|
||
|
||
-- Get the polynomial G (X) = F (X + s) from the polynomial F(X)
|
||
lemma Polynomial_shifting (F : Polynomial ℚ) (s : ℚ) : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
|
||
sorry
|
||
|
||
-- Shifting doesn't change the polynomial type
|
||
lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by
|
||
simp only [PolyType]
|
||
rcases hf with ⟨F, hh⟩
|
||
rcases hh with ⟨N,s1, s2⟩
|
||
have this : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
|
||
exact Polynomial_shifting F s
|
||
rcases this with ⟨Poly, h1, h2⟩
|
||
use Poly
|
||
use N
|
||
constructor
|
||
· intro n
|
||
specialize s1 (n + s)
|
||
intro hN
|
||
have this1 : f (n + s) = Polynomial.eval (n + s : ℚ) F := by
|
||
sorry
|
||
sorry
|
||
· rw [h2, s2]
|
||
|
||
|
||
|
||
-- PolyType 0 = constant function
|
||
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ),
|
||
(N ≤ n → f n = c)) ∧ c ≠ 0) := by
|
||
constructor
|
||
· rintro ⟨Poly, ⟨N, ⟨H1, H2⟩⟩⟩
|
||
have this1 : Polynomial.degree Poly = 0 := by rw [← H2]; rfl
|
||
have this2 : ∃ (c : ℤ), Poly = Polynomial.C (c : ℚ) := by
|
||
have HH : ∃ (c : ℚ), Poly = Polynomial.C (c : ℚ) :=
|
||
⟨Poly.coeff 0, Polynomial.eq_C_of_degree_eq_zero (by rw[← H2]; rfl)⟩
|
||
cases' HH with c HHH
|
||
have HHHH : ∃ (d : ℤ), d = c :=
|
||
⟨f N, by simp [(Poly_constant Poly c).mp HHH N, H1 N (le_refl N)]⟩
|
||
cases' HHHH with d H5; exact ⟨d, by rw[← H5] at HHH; exact HHH⟩
|
||
rcases this2 with ⟨c, hthis2⟩
|
||
use c; use N; constructor
|
||
· intro n
|
||
have this4 : Polynomial.eval (n : ℚ) Poly = c := by
|
||
rw [hthis2]; simp only [map_intCast, Polynomial.eval_int_cast]
|
||
exact fun HH1 => Iff.mp (Rat.coe_int_inj (f n) c) (by rw [←this4, H1 n HH1])
|
||
· intro c0
|
||
simp only [hthis2, c0, Int.cast_zero, map_zero, Polynomial.degree_zero]
|
||
at this1
|
||
· rintro ⟨c, N, hh⟩
|
||
have H2 : (c : ℚ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero, hh]
|
||
exact ⟨Polynomial.C (c : ℚ), N, fun n Nn
|
||
=> by rw [hh.1 n Nn]; exact (((Poly_constant (Polynomial.C (c : ℚ))
|
||
(c : ℚ)).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩
|
||
|
||
-- Δ of 0 times preserves the function
|
||
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by tauto
|
||
|
||
-- Δ of 1 times decreaes the polynomial type by one
|
||
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by
|
||
intro h
|
||
simp only [PolyType, Δ, Int.cast_sub, exists_and_right]
|
||
rcases h with ⟨F, N, h⟩
|
||
rcases h with ⟨h1, h2⟩
|
||
have this : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + 1) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
|
||
exact Polynomial_shifting F 1
|
||
rcases this with ⟨G, hG, hGG⟩
|
||
let Poly := G - F
|
||
use Poly
|
||
constructor
|
||
· use N
|
||
intro n hn
|
||
specialize hG n
|
||
norm_num
|
||
rw [hG]
|
||
let h3 := h1
|
||
specialize h3 n
|
||
have this1 : f n = Polynomial.eval (n : ℚ) F := by tauto
|
||
have this2 : f (n + 1) = Polynomial.eval ((n + 1) : ℚ) F := by
|
||
specialize h1 (n + 1)
|
||
have this3 : N ≤ n + 1 := by linarith
|
||
aesop
|
||
rw [←this1, ←this2]
|
||
· have this1 : Polynomial.degree Poly = d := by
|
||
have this2 : Polynomial.degree Poly ≤ d := by
|
||
sorry
|
||
have this3 : Polynomial.degree Poly ≥ d := by
|
||
sorry
|
||
sorry
|
||
tauto
|
||
|
||
|
||
-- The "reverse" of Δ of 1 times increases the polynomial type by one
|
||
lemma Δ_1_ (f : ℤ → ℤ) (d : ℕ) : PolyType (Δ f 1) d → PolyType f (d + 1) := by
|
||
intro h
|
||
simp only [PolyType, Nat.cast_add, Nat.cast_one, exists_and_right]
|
||
rcases h with ⟨P, N, h⟩
|
||
rcases h with ⟨h1, h2⟩
|
||
let G := fun (q : ℤ) => f (N)
|
||
sorry
|
||
|
||
|
||
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
||
lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
|
||
induction' s with s hs
|
||
· norm_num
|
||
· aesop
|
||
lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ f d) 0):= by
|
||
induction' d with d hd
|
||
· intro f h
|
||
rw [Δ_0]
|
||
exact h
|
||
· intro f hf
|
||
have this4 := hd (Δ f 1) $ (Δ_1 f d) hf
|
||
rwa [Δ_1_s_equiv_Δ_s_1] at this4
|
||
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := fun h => (foofoo d f) h
|
||
|
||
|
||
-- [BH, 4.1.2] (a) => (b)
|
||
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
||
lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
||
induction' d with d hd
|
||
|
||
-- Base case
|
||
· intro f
|
||
intro h
|
||
rcases h with ⟨c, N, hh⟩
|
||
rw [PolyType_0]
|
||
use c
|
||
use N
|
||
tauto
|
||
|
||
-- Induction step
|
||
· intro f
|
||
intro h
|
||
rcases h with ⟨c, N, h⟩
|
||
have this : PolyType f (d + 1) := by
|
||
rcases h with ⟨H,c0⟩
|
||
let g := (Δ f 1)
|
||
-- let g := fun (x : ℤ) => (f (x + 1) - f (x))
|
||
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by
|
||
use c; use N
|
||
constructor
|
||
· intro n
|
||
specialize H n
|
||
intro h
|
||
have this : Δ f (d + 1) n = c := by tauto
|
||
rw [←this]
|
||
rw [Δ_1_s_equiv_Δ_s_1]
|
||
· tauto
|
||
have this2 : PolyType g d := by
|
||
apply hd
|
||
tauto
|
||
exact Δ_1_ f d this2
|
||
tauto
|
||
lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := fun h => (foo d f) h
|
||
|
||
|
||
|
||
-- [BH, 4.1.2] (a) <= (b)
|
||
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
||
lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) := by
|
||
intro h
|
||
have : PolyType (Δ f d) 0 := by
|
||
apply Δ_d_PolyType_d_to_PolyType_0
|
||
exact h
|
||
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), (N ≤ n → (Δ f d) n = c)) ∧ c ≠ 0) := by
|
||
rw [←PolyType_0]
|
||
exact this
|
||
exact this1
|
||
end
|
||
|
||
-- @Additive lemma of length for a SES
|
||
-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0
|
||
section
|
||
open LinearMap
|
||
|
||
-- Definitiion of the length of a module
|
||
noncomputable def length (R M : Type _) [CommRing R] [AddCommGroup M] [Module R M] := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||
#check length ℤ ℤ
|
||
|
||
-- Definition of a SES (Short Exact Sequence)
|
||
-- @[ext]
|
||
structure SES {R A B C : Type _} [CommRing R] [AddCommGroup A] [AddCommGroup B]
|
||
[AddCommGroup C] [Module R A] [Module R B] [Module R C]
|
||
(f : A →ₗ[R] B) (g : B →ₗ[R] C)
|
||
where
|
||
left_exact : LinearMap.ker f = ⊥
|
||
middle_exact : LinearMap.range f = LinearMap.ker g
|
||
right_exact : LinearMap.range g = ⊤
|
||
|
||
-- Additive lemma
|
||
lemma length_Additive (R A B C : Type _) [CommRing R] [AddCommGroup A] [AddCommGroup B] [AddCommGroup C] [Module R A] [Module R B] [Module R C]
|
||
(f : A →ₗ[R] B) (g : B →ₗ[R] C)
|
||
: (SES f g) → ((length R A) + (length R C) = (length R B)) := by
|
||
intro h
|
||
rcases h with ⟨left_exact, middle_exact, right_exact⟩
|
||
sorry
|
||
|
||
end section |