comm_alg/FinalPolyType.lean

328 lines
11 KiB
Text
Raw Normal View History

2023-06-16 00:54:11 -05:00
import Mathlib.Order.Height
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
-- Setting for "library_search"
set_option maxHeartbeats 0
macro "ls" : tactic => `(tactic|library_search)
-- New tactic "obviously"
macro "obviously" : tactic =>
`(tactic| (
first
| dsimp; simp; done; dbg_trace "it was dsimp simp"
| simp; done; dbg_trace "it was simp"
| tauto; done; dbg_trace "it was tauto"
| simp; tauto; done; dbg_trace "it was simp tauto"
| rfl; done; dbg_trace "it was rfl"
| norm_num; done; dbg_trace "it was norm_num"
| /-change (@Eq _ _);-/ linarith; done; dbg_trace "it was linarith"
-- | gcongr; done
| ring; done; dbg_trace "it was ring"
| trivial; done; dbg_trace "it was trivial"
| aesop; done; dbg_trace "it was aesop"
2023-06-16 01:29:40 -05:00
| assumption; done; dbg_trace "it was assumption"
2023-06-16 00:54:11 -05:00
-- | nlinarith; done
| fail "No, this is not obvious."))
-- Testing of Polynomial
section Polynomial
noncomputable section
#check Polynomial
#check Polynomial ()
#check Polynomial.eval
example (f : Polynomial ) (hf : f = Polynomial.C (1 : )) : Polynomial.eval 2 f = 1 := by
have : ∀ (q : ), Polynomial.eval q f = 1 := by
sorry
obviously
-- example (f : ) (hf : ∀ x, f x = x ^ 2) : Polynomial.eval 2 f = 4 := by
-- sorry
-- degree of a constant function is ⊥ (is this same as -1 ???)
#print Polynomial.degree_zero
2023-06-16 13:16:41 -05:00
def FF : Polynomial := Polynomial.C (2 : )
#print FF
#check FF
#check Polynomial.degree FF
2023-06-16 00:54:11 -05:00
#check Polynomial.degree 0
#check WithBot
2023-06-16 13:16:41 -05:00
-- #eval Polynomial.degree FF
#check Polynomial.eval 1 FF
example : Polynomial.eval (100 : ) FF = (2 : ) := by
refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 FF) 2) ?_
2023-06-16 00:54:11 -05:00
simp only [Rat.ofNat_num, Rat.ofNat_den]
2023-06-16 13:16:41 -05:00
rw [FF]
2023-06-16 00:54:11 -05:00
simp
2023-06-16 13:16:41 -05:00
sorry
2023-06-16 00:54:11 -05:00
-- Treat polynomial f ∈ [X] as a function f :
#check CoeFun
2023-06-16 13:16:41 -05:00
#check Polynomial.eval₂
#check Polynomial.comp
#check Polynomial.eval₂.comp
#check Polynomial.card_roots
2023-06-16 00:54:11 -05:00
end section
-- @[BH, 4.1.2]
-- All the polynomials are in [X], all the functions are considered as
noncomputable section
-- Polynomial type of degree d
@[simp]
def PolyType (f : ) (d : ) := ∃ Poly : Polynomial , ∃ (N : ), (∀ (n : ), N ≤ n → f n = Polynomial.eval (n : ) Poly) ∧ d = Polynomial.degree Poly
section
-- structure PolyType (f : ) where
-- Poly : Polynomial
-- d :
-- N :
-- Poly_equal : ∀ n ∈ → f n = Polynomial.eval n : Poly
#check PolyType
example (f : ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by
unfold PolyType
sorry
-- use Polynomial.monomial (2 : ) (1 : )
-- have' := hf 0; ring_nf at this
-- exact this
end section
-- Δ operator (of d times)
@[simp]
def Δ : () → → ()
| f, 0 => f
2023-06-16 13:16:41 -05:00
| f, d + 1 => fun (n : ) ↦ (Δ f d) (n + 1) - (Δ f d) (n)
2023-06-16 00:54:11 -05:00
section
-- def Δ (f : ) (d : ) := fun (n : ) ↦ f (n + 1) - f n
-- def add' :
-- | 0, m => m
-- | n+1, m => (add' n m) + 1
-- #eval add' 5 10
#check Δ
2023-06-16 13:16:41 -05:00
def fff (n : ) := n
#eval (Δ fff 1) 100
2023-06-16 00:54:11 -05:00
-- #check (by (show_term unfold Δ) : Δ f 0=0)
end section
-- (NO need to prove another direction) Constant polynomial function = constant function
lemma Poly_constant (F : Polynomial ) (c : ) :
(F = Polynomial.C (c : )) ↔ (∀ r : , (Polynomial.eval r F) = (c : )) := by
constructor
· intro h
rintro r
refine Iff.mpr (Rat.ext_iff (Polynomial.eval r F) c) ?_
simp only [Rat.ofNat_num, Rat.ofNat_den]
rw [h]
simp
· sorry
2023-06-16 13:16:41 -05:00
-- Get the polynomial G (X) = F (X + s) from the polynomial F(X)
lemma Polynomial_shifting (F : Polynomial ) (s : ) : ∃ (G : Polynomial ), (∀ (x : ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
sorry
2023-06-16 00:54:11 -05:00
-- Shifting doesn't change the polynomial type
lemma Poly_shifting (f : ) (g : ) (hf : PolyType f d) (s : ) (hfg : ∀ (n : ), f (n + s) = g (n)) : PolyType g d := by
simp only [PolyType]
rcases hf with ⟨F, hh⟩
2023-06-16 13:16:41 -05:00
rcases hh with ⟨N,s1, s2⟩
have this : ∃ (G : Polynomial ), (∀ (x : ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
exact Polynomial_shifting F s
rcases this with ⟨Poly, h1, h2⟩
use Poly
use N
constructor
· intro n
specialize s1 (n + s)
intro hN
have this1 : f (n + s) = Polynomial.eval (n + s : ) F := by
sorry
sorry
· rw [h2, s2]
2023-06-16 00:54:11 -05:00
-- PolyType 0 = constant function
lemma PolyType_0 (f : ) : (PolyType f 0) ↔ (∃ (c : ), ∃ (N : ), (∀ (n : ),
(N ≤ n → f n = c)) ∧ c ≠ 0) := by
constructor
· rintro ⟨Poly, ⟨N, ⟨H1, H2⟩⟩⟩
have this1 : Polynomial.degree Poly = 0 := by rw [← H2]; rfl
have this2 : ∃ (c : ), Poly = Polynomial.C (c : ) := by
have HH : ∃ (c : ), Poly = Polynomial.C (c : ) :=
⟨Poly.coeff 0, Polynomial.eq_C_of_degree_eq_zero (by rw[← H2]; rfl)⟩
cases' HH with c HHH
2023-06-16 13:16:41 -05:00
have HHHH : ∃ (d : ), d = c :=
2023-06-16 00:54:11 -05:00
⟨f N, by simp [(Poly_constant Poly c).mp HHH N, H1 N (le_refl N)]⟩
cases' HHHH with d H5; exact ⟨d, by rw[← H5] at HHH; exact HHH⟩
rcases this2 with ⟨c, hthis2⟩
2023-06-16 13:16:41 -05:00
use c; use N; constructor
· intro n
have this4 : Polynomial.eval (n : ) Poly = c := by
2023-06-16 00:54:11 -05:00
rw [hthis2]; simp only [map_intCast, Polynomial.eval_int_cast]
exact fun HH1 => Iff.mp (Rat.coe_int_inj (f n) c) (by rw [←this4, H1 n HH1])
· intro c0
simp only [hthis2, c0, Int.cast_zero, map_zero, Polynomial.degree_zero]
at this1
· rintro ⟨c, N, hh⟩
2023-06-16 13:16:41 -05:00
have H2 : (c : ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero, hh]
2023-06-16 00:54:11 -05:00
exact ⟨Polynomial.C (c : ), N, fun n Nn
2023-06-16 13:16:41 -05:00
=> by rw [hh.1 n Nn]; exact (((Poly_constant (Polynomial.C (c : ))
2023-06-16 00:54:11 -05:00
(c : )).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩
-- Δ of 0 times preserves the function
lemma Δ_0 (f : ) : (Δ f 0) = f := by tauto
-- Δ of 1 times decreaes the polynomial type by one
lemma Δ_1 (f : ) (d : ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by
2023-06-16 01:29:40 -05:00
intro h
simp only [PolyType, Δ, Int.cast_sub, exists_and_right]
2023-06-16 13:16:41 -05:00
rcases h with ⟨F, N, h⟩
rcases h with ⟨h1, h2⟩
have this : ∃ (G : Polynomial ), (∀ (x : ), Polynomial.eval x G = Polynomial.eval (x + 1) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
exact Polynomial_shifting F 1
rcases this with ⟨G, hG, hGG⟩
let Poly := G - F
use Poly
constructor
· use N
intro n hn
specialize hG n
norm_num
rw [hG]
let h3 := h1
specialize h3 n
have this1 : f n = Polynomial.eval (n : ) F := by tauto
have this2 : f (n + 1) = Polynomial.eval ((n + 1) : ) F := by
specialize h1 (n + 1)
have this3 : N ≤ n + 1 := by linarith
aesop
rw [←this1, ←this2]
· have this1 : Polynomial.degree Poly = d := by
have this2 : Polynomial.degree Poly ≤ d := by
sorry
have this3 : Polynomial.degree Poly ≥ d := by
sorry
sorry
tauto
2023-06-16 00:54:11 -05:00
-- The "reverse" of Δ of 1 times increases the polynomial type by one
lemma Δ_1_ (f : ) (d : ) : PolyType (Δ f 1) d → PolyType f (d + 1) := by
2023-06-16 13:16:41 -05:00
intro h
simp only [PolyType, Nat.cast_add, Nat.cast_one, exists_and_right]
rcases h with ⟨P, N, h⟩
rcases h with ⟨h1, h2⟩
let G := fun (q : ) => f (N)
2023-06-16 00:54:11 -05:00
sorry
2023-06-16 13:16:41 -05:00
2023-06-16 00:54:11 -05:00
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
lemma Δ_1_s_equiv_Δ_s_1 (f : ) (s : ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
2023-06-16 01:29:40 -05:00
induction' s with s hs
· norm_num
· aesop
2023-06-16 00:54:11 -05:00
lemma foofoo (d : ) : (f : ) → (PolyType f d) → (PolyType (Δ f d) 0):= by
induction' d with d hd
· intro f h
rw [Δ_0]
2023-06-16 13:16:41 -05:00
exact h
2023-06-16 00:54:11 -05:00
· intro f hf
2023-06-16 13:16:41 -05:00
have this4 := hd (Δ f 1) $ (Δ_1 f d) hf
rwa [Δ_1_s_equiv_Δ_s_1] at this4
2023-06-16 00:54:11 -05:00
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ) (d : ): PolyType f d → PolyType (Δ f d) 0 := fun h => (foofoo d f) h
-- [BH, 4.1.2] (a) => (b)
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
lemma foo (d : ) : (f : ) → (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
induction' d with d hd
-- Base case
· intro f
intro h
rcases h with ⟨c, N, hh⟩
rw [PolyType_0]
use c
use N
tauto
-- Induction step
· intro f
intro h
rcases h with ⟨c, N, h⟩
have this : PolyType f (d + 1) := by
rcases h with ⟨H,c0⟩
let g := (Δ f 1)
-- let g := fun (x : ) => (f (x + 1) - f (x))
have this1 : (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by
use c; use N
constructor
· intro n
specialize H n
intro h
have this : Δ f (d + 1) n = c := by tauto
rw [←this]
rw [Δ_1_s_equiv_Δ_s_1]
· tauto
have this2 : PolyType g d := by
apply hd
tauto
exact Δ_1_ f d this2
tauto
lemma a_to_b (f : ) (d : ) : (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := fun h => (foo d f) h
-- [BH, 4.1.2] (a) <= (b)
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
lemma b_to_a (f : ) (d : ) : PolyType f d → (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) := by
intro h
have : PolyType (Δ f d) 0 := by
apply Δ_d_PolyType_d_to_PolyType_0
exact h
have this1 : (∃ (c : ), ∃ (N : ), (∀ (n : ), (N ≤ n → (Δ f d) n = c)) ∧ c ≠ 0) := by
rw [←PolyType_0]
exact this
exact this1
end
-- @Additive lemma of length for a SES
-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0
section
open LinearMap
-- Definitiion of the length of a module
noncomputable def length (R M : Type _) [CommRing R] [AddCommGroup M] [Module R M] := Set.chainHeight {M' : Submodule R M | M' < }
#check length
-- Definition of a SES (Short Exact Sequence)
-- @[ext]
structure SES {R A B C : Type _} [CommRing R] [AddCommGroup A] [AddCommGroup B]
[AddCommGroup C] [Module R A] [Module R B] [Module R C]
(f : A →ₗ[R] B) (g : B →ₗ[R] C)
where
left_exact : LinearMap.ker f = ⊥
middle_exact : LinearMap.range f = LinearMap.ker g
right_exact : LinearMap.range g =
-- Additive lemma
lemma length_Additive (R A B C : Type _) [CommRing R] [AddCommGroup A] [AddCommGroup B] [AddCommGroup C] [Module R A] [Module R B] [Module R C]
(f : A →ₗ[R] B) (g : B →ₗ[R] C)
: (SES f g) → ((length R A) + (length R C) = (length R B)) := by
intro h
rcases h with ⟨left_exact, middle_exact, right_exact⟩
sorry
end section