comm_alg/CommAlg/sayantan(dim_eq_dim_polynomial_add_one).lean

46 lines
No EOL
2.2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Order.Height
import Mathlib.RingTheory.PrincipalIdealDomain
import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.ConditionallyCompleteLattice.Basic
namespace Ideal
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
-- private lemma sum_succ_of_succ_sum {ι : Type} (a : ℕ∞) [inst : Nonempty ι] :
-- (⨆ (x : ι), a + 1) = (⨆ (x : ι), a) + 1 := by
-- have : a + 1 = (⨆ (x : ι), a) + 1 := by rw [ciSup_const]
-- have : a + 1 = (⨆ (x : ι), a + 1) := Eq.symm ciSup_const
-- simp
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
krullDim R + 1 = krullDim (Polynomial R) := by
rw [le_antisymm_iff]
constructor
· exact dim_le_dim_polynomial_add_one
· unfold krullDim
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P: WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
intro P
unfold height
sorry
have : (⨆ (I : PrimeSpectrum R), ↑(height I) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
have : ∀ P : PrimeSpectrum R, ↑(height P) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
fun _ ↦ add_le_add_right (le_iSup height _) 1
apply iSup_le
exact this
sorry