mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
Made some progress on dim_eq_dim_polynomial_add_one
This commit is contained in:
parent
06a491b843
commit
56cefd9b53
1 changed files with 46 additions and 0 deletions
46
CommAlg/sayantan(dim_eq_dim_polynomial_add_one).lean
Normal file
46
CommAlg/sayantan(dim_eq_dim_polynomial_add_one).lean
Normal file
|
@ -0,0 +1,46 @@
|
|||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
|
||||
namespace Ideal
|
||||
|
||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
|
||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||
|
||||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||
|
||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
||||
|
||||
-- private lemma sum_succ_of_succ_sum {ι : Type} (a : ℕ∞) [inst : Nonempty ι] :
|
||||
-- (⨆ (x : ι), a + 1) = (⨆ (x : ι), a) + 1 := by
|
||||
-- have : a + 1 = (⨆ (x : ι), a) + 1 := by rw [ciSup_const]
|
||||
-- have : a + 1 = (⨆ (x : ι), a + 1) := Eq.symm ciSup_const
|
||||
-- simp
|
||||
|
||||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||
krullDim R + 1 = krullDim (Polynomial R) := by
|
||||
rw [le_antisymm_iff]
|
||||
constructor
|
||||
· exact dim_le_dim_polynomial_add_one
|
||||
· unfold krullDim
|
||||
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P: WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
||||
intro P
|
||||
unfold height
|
||||
sorry
|
||||
have : (⨆ (I : PrimeSpectrum R), ↑(height I) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
|
||||
have : ∀ P : PrimeSpectrum R, ↑(height P) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
|
||||
fun _ ↦ add_le_add_right (le_iSup height _) 1
|
||||
apply iSup_le
|
||||
exact this
|
||||
sorry
|
Loading…
Reference in a new issue