comm_alg/CommAlg/sayantan(poly_over_field).lean

95 lines
3.7 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import CommAlg.krull
import Mathlib.RingTheory.Ideal.Operations
import Mathlib.Order.Height
import Mathlib.RingTheory.PrincipalIdealDomain
import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
namespace Ideal
private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] : Set.chainHeight {(⊥ : α)} ≤ 1 := by
unfold Set.chainHeight
simp only [iSup_le_iff, Nat.cast_le_one]
intro L h
unfold Set.subchain at h
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at h
rcases L with (_ | ⟨a,L⟩)
. simp only [List.length_nil, zero_le]
rcases L with (_ | ⟨b,L⟩)
. simp only [List.length_singleton, le_refl]
simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h
rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩
exact absurd h1 (lt_irrefl _)
/-- The ring of polynomials over a field has dimension one. -/
-- It's the exact same lemma as in krull.lean, added ' to avoid conflict
lemma polynomial_over_field_dim_one' {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
rw [le_antisymm_iff]
let X := @Polynomial.X K _
constructor
· unfold krullDim
apply @iSup_le (WithBot ℕ∞) _ _ _ _
intro I
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
by_cases I = ⊥
· rw [← height_bot_iff_bot] at h
simp only [WithBot.coe_le_one, ge_iff_le]
rw [h]
exact bot_le
· push_neg at h
have : I.asIdeal ≠ ⊥ := by
by_contra a
have : I = ⊥ := PrimeSpectrum.ext I ⊥ a
contradiction
have maxI := IsPrime.to_maximal_ideal this
have sngletn : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
intro P
constructor
· intro H
simp only [Set.mem_setOf_eq] at H
by_contra x
push_neg at x
have : P.asIdeal ≠ ⊥ := by
by_contra a
have : P = ⊥ := PrimeSpectrum.ext P ⊥ a
contradiction
have maxP := IsPrime.to_maximal_ideal this
have IneTop := IsMaximal.ne_top maxI
have : P ≤ I := le_of_lt H
rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this
have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this
have : P = I := PrimeSpectrum.ext P I this
replace H : P ≠ I := ne_of_lt H
contradiction
· intro pBot
simp only [Set.mem_setOf_eq, pBot]
exact lt_of_le_of_ne bot_le h.symm
replace sngletn : {J | J < I} = {⊥} := Set.ext sngletn
unfold height
rw [sngletn]
simp only [WithBot.coe_le_one, ge_iff_le]
exact singleton_bot_chainHeight_one
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
· obtain ⟨I, h⟩ := this
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
apply @le_iSup (WithBot ℕ∞) _ _ _ I
exact le_trans h this
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
have : IsPrime (span {X}) := by
refine (span_singleton_prime ?hp).mpr primeX
exact Polynomial.X_ne_zero
let P := PrimeSpectrum.mk (span {X}) this
unfold height
use P
have : ⊥ ∈ {J | J < P} := by
simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot]
suffices : P.asIdeal ≠ ⊥
· by_contra x
rw [PrimeSpectrum.ext_iff] at x
contradiction
by_contra x
simp only [span_singleton_eq_bot] at x
have := @Polynomial.X_ne_zero K _ _
contradiction
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
rwa [←Set.one_le_chainHeight_iff, ←WithBot.one_le_coe] at this