mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 07:08:36 -06:00
Add the whole proof back since I just noticed that I had replaced them by sorried statements
This commit is contained in:
parent
f76ff450e7
commit
c5f0eb2081
2 changed files with 59 additions and 3 deletions
|
@ -377,12 +377,67 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
|
|||
rw [dim_le_one_iff]
|
||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||
|
||||
private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] : Set.chainHeight {(⊥ : α)} ≤ 1 := by
|
||||
unfold Set.chainHeight
|
||||
simp only [iSup_le_iff, Nat.cast_le_one]
|
||||
intro L h
|
||||
unfold Set.subchain at h
|
||||
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at h
|
||||
rcases L with (_ | ⟨a,L⟩)
|
||||
. simp only [List.length_nil, zero_le]
|
||||
rcases L with (_ | ⟨b,L⟩)
|
||||
. simp only [List.length_singleton, le_refl]
|
||||
simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h
|
||||
rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩
|
||||
exact absurd h1 (lt_irrefl _)
|
||||
|
||||
/-- The ring of polynomials over a field has dimension one. -/
|
||||
lemma polynomial_over_field_dim_one {K : Type _} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||
rw [le_antisymm_iff]
|
||||
let X := @Polynomial.X K _
|
||||
constructor
|
||||
· exact dim_le_one_of_pid
|
||||
· unfold krullDim
|
||||
apply @iSup_le (WithBot ℕ∞) _ _ _ _
|
||||
intro I
|
||||
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
|
||||
by_cases I = ⊥
|
||||
· rw [← height_bot_iff_bot] at h
|
||||
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||
rw [h]
|
||||
exact bot_le
|
||||
· push_neg at h
|
||||
have : I.asIdeal ≠ ⊥ := by
|
||||
by_contra a
|
||||
have : I = ⊥ := PrimeSpectrum.ext I ⊥ a
|
||||
contradiction
|
||||
have maxI := IsPrime.to_maximal_ideal this
|
||||
have sngletn : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
|
||||
intro P
|
||||
constructor
|
||||
· intro H
|
||||
simp only [Set.mem_setOf_eq] at H
|
||||
by_contra x
|
||||
push_neg at x
|
||||
have : P.asIdeal ≠ ⊥ := by
|
||||
by_contra a
|
||||
have : P = ⊥ := PrimeSpectrum.ext P ⊥ a
|
||||
contradiction
|
||||
have maxP := IsPrime.to_maximal_ideal this
|
||||
have IneTop := IsMaximal.ne_top maxI
|
||||
have : P ≤ I := le_of_lt H
|
||||
rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this
|
||||
have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this
|
||||
have : P = I := PrimeSpectrum.ext P I this
|
||||
replace H : P ≠ I := ne_of_lt H
|
||||
contradiction
|
||||
· intro pBot
|
||||
simp only [Set.mem_setOf_eq, pBot]
|
||||
exact lt_of_le_of_ne bot_le h.symm
|
||||
replace sngletn : {J | J < I} = {⊥} := Set.ext sngletn
|
||||
unfold height
|
||||
rw [sngletn]
|
||||
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||
exact singleton_bot_chainHeight_one
|
||||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||
· obtain ⟨I, h⟩ := this
|
||||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||
|
|
|
@ -22,7 +22,8 @@ private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] :
|
|||
exact absurd h1 (lt_irrefl _)
|
||||
|
||||
/-- The ring of polynomials over a field has dimension one. -/
|
||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||
-- It's the exact same lemma as in krull.lean, added ' to avoid conflict
|
||||
lemma polynomial_over_field_dim_one' {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||
rw [le_antisymm_iff]
|
||||
let X := @Polynomial.X K _
|
||||
constructor
|
||||
|
|
Loading…
Reference in a new issue