comm_alg/CommAlg/sameer(artinian-rings).lean
2023-06-13 16:00:58 -07:00

68 lines
2.5 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.RingTheory.Ideal.Basic
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Artinian
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.RingTheory.DedekindDomain.DVR
lemma FieldisArtinian (R : Type _) [CommRing R] (IsField : ):= by sorry
lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R]
(IsArt : IsArtinianRing R) : IsField (R) := by
-- Assume P is nonzero and R is Artinian
-- Localize at P; Then R_P is Artinian;
-- Assume R_P is not a field
-- Then Jacobson Radical of R_P is nilpotent so it's maximal ideal is nilpotent
-- Maximal ideal is zero since local ring is a domain
-- a contradiction since P is nonzero
-- Therefore, R is a field
have maxIdeal := Ideal.exists_maximal R
obtain ⟨m,hm⟩ := maxIdeal
have h:= Ideal.primeCompl_le_nonZeroDivisors m
have artRP : IsDomain _ := IsLocalization.isDomain_localization h
have h' : IsArtinianRing (Localization (Ideal.primeCompl m)) := inferInstance
have h' : IsNilpotent (Ideal.jacobson (⊥ : Ideal (Localization
(Ideal.primeCompl m)))):= IsArtinianRing.isNilpotent_jacobson_bot
have := LocalRing.jacobson_eq_maximalIdeal (⊥ : Ideal (Localization
(Ideal.primeCompl m))) bot_ne_top
rw [this] at h'
have := IsNilpotent.eq_zero h'
rw [Ideal.zero_eq_bot, ← LocalRing.isField_iff_maximalIdeal_eq] at this
by_contra h''
--by_cases h'' : m = ⊥
have := Ring.ne_bot_of_isMaximal_of_not_isField hm h''
have := IsLocalization.AtPrime.not_isField R this (Localization (Ideal.primeCompl m))
contradiction
#check Ideal.IsPrime
#check IsDomain
lemma isArtinianRing_of_quotient_of_artinian (R : Type _) [CommRing R]
(I : Ideal R) (IsArt : IsArtinianRing R) : IsArtinianRing (R I) :=
isArtinian_of_tower R (isArtinian_of_quotient_of_artinian R R I IsArt)
lemma IsPrimeMaximal (R : Type _) [CommRing R] (P : Ideal R)
(IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime P) : Ideal.IsMaximal P :=
by
-- if R is Artinian and P is prime then R/P is Integral Domain
-- which is Artinian Domain
-- RP is a field by the above lemma
-- P is maximal
have : IsDomain (RP) := Ideal.Quotient.isDomain P
have artRP : IsArtinianRing (RP) := by
exact isArtinianRing_of_quotient_of_artinian R P IsArt
-- Then R/I is Artinian
-- have' : IsArtinianRing R ∧ Ideal.IsPrime I → IsDomain (RI) := by
-- RI.IsArtinian → monotone_stabilizes_iff_artinian.RI
-- Use Stacks project proof since it's broken into lemmas