comm_alg/CommAlg/sameer(artinian-rings).lean

69 lines
2.5 KiB
Text
Raw Permalink Normal View History

2023-06-12 12:34:51 -05:00
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Artinian
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
2023-06-13 18:00:58 -05:00
import Mathlib.RingTheory.DedekindDomain.DVR
lemma FieldisArtinian (R : Type _) [CommRing R] (IsField : ):= by sorry
lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R]
(IsArt : IsArtinianRing R) : IsField (R) := by
-- Assume P is nonzero and R is Artinian
-- Localize at P; Then R_P is Artinian;
-- Assume R_P is not a field
-- Then Jacobson Radical of R_P is nilpotent so it's maximal ideal is nilpotent
-- Maximal ideal is zero since local ring is a domain
-- a contradiction since P is nonzero
-- Therefore, R is a field
have maxIdeal := Ideal.exists_maximal R
obtain ⟨m,hm⟩ := maxIdeal
have h:= Ideal.primeCompl_le_nonZeroDivisors m
have artRP : IsDomain _ := IsLocalization.isDomain_localization h
have h' : IsArtinianRing (Localization (Ideal.primeCompl m)) := inferInstance
have h' : IsNilpotent (Ideal.jacobson (⊥ : Ideal (Localization
(Ideal.primeCompl m)))):= IsArtinianRing.isNilpotent_jacobson_bot
have := LocalRing.jacobson_eq_maximalIdeal (⊥ : Ideal (Localization
(Ideal.primeCompl m))) bot_ne_top
rw [this] at h'
have := IsNilpotent.eq_zero h'
rw [Ideal.zero_eq_bot, ← LocalRing.isField_iff_maximalIdeal_eq] at this
by_contra h''
--by_cases h'' : m = ⊥
have := Ring.ne_bot_of_isMaximal_of_not_isField hm h''
have := IsLocalization.AtPrime.not_isField R this (Localization (Ideal.primeCompl m))
contradiction
2023-06-12 12:34:51 -05:00
2023-06-12 15:34:09 -05:00
#check Ideal.IsPrime
2023-06-13 18:00:58 -05:00
#check IsDomain
lemma isArtinianRing_of_quotient_of_artinian (R : Type _) [CommRing R]
(I : Ideal R) (IsArt : IsArtinianRing R) : IsArtinianRing (R I) :=
isArtinian_of_tower R (isArtinian_of_quotient_of_artinian R R I IsArt)
lemma IsPrimeMaximal (R : Type _) [CommRing R] (P : Ideal R)
(IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime P) : Ideal.IsMaximal P :=
by
-- if R is Artinian and P is prime then R/P is Integral Domain
-- which is Artinian Domain
-- RP is a field by the above lemma
-- P is maximal
have : IsDomain (RP) := Ideal.Quotient.isDomain P
have artRP : IsArtinianRing (RP) := by
exact isArtinianRing_of_quotient_of_artinian R P IsArt
-- Then R/I is Artinian
-- have' : IsArtinianRing R ∧ Ideal.IsPrime I → IsDomain (RI) := by
-- RI.IsArtinian → monotone_stabilizes_iff_artinian.RI
2023-06-12 15:34:09 -05:00
2023-06-12 12:34:51 -05:00
-- Use Stacks project proof since it's broken into lemmas