Add statements for the reduced case M=R/p

This commit is contained in:
chelseaandmadrid 2023-06-14 21:13:11 -07:00
parent 191e02e984
commit f9e7942a60
2 changed files with 70 additions and 38 deletions

View file

@ -115,7 +115,6 @@ instance Quotient_of_graded_is_graded
-- If A_0 is Artinian and local, then A is graded local -- If A_0 is Artinian and local, then A is graded local
lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : → Type _) (𝓜 : → Type _) lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : → Type _) (𝓜 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
@ -123,40 +122,6 @@ lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : → Type _)
sorry sorry
-- @[BH, 4.1.3] when d ≥ 1
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
theorem Hilbert_polynomial_ge1 (d : ) (d1 : 1 ≤ d) (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
(hilb : ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
: PolyType hilb (d - 1) := by
sorry
-- @[BH, 4.1.3] when d = 0
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
theorem Hilbert_polynomial_0 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
(hilb : ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
: (∃ (N : ), ∀ (n : ), n ≥ N → hilb n = 0) := by
sorry
-- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M -- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M
lemma Exist_chain_of_graded_submodules (𝒜 : → Type _) (𝓜 : → Type _) lemma Exist_chain_of_graded_submodules (𝒜 : → Type _) (𝓜 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
@ -168,7 +133,6 @@ lemma Exist_chain_of_graded_submodules (𝒜 : → Type _) (𝓜 : → T
-- @[BH, 1.5.6 (b)(ii)] -- @[BH, 1.5.6 (b)(ii)]
-- An associated prime of a graded R-Mod M is graded -- An associated prime of a graded R-Mod M is graded
lemma Associated_prime_of_graded_is_graded lemma Associated_prime_of_graded_is_graded
@ -185,6 +149,75 @@ lemma Associated_prime_of_graded_is_graded
def Graded_homo : true := by -- @[BH, 4.1.3] when d ≥ 1
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
theorem Hilbert_polynomial_d_ge_1 (d : ) (d1 : 1 ≤ d) (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
(hilb : ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
: PolyType hilb (d - 1) := by
sorry sorry
-- (reduced version) [BH, 4.1.3] when d ≥ 1
-- If M is a finite graed R-Mod of dimension d ≥ 1, and M = R 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) is of polynomial type (d - 1)
theorem Hilbert_polynomial_d_ge_1_reduced
(d : ) (d1 : 1 ≤ d)
(𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
(hilb : ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
(hm : 𝓜 = (fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
: PolyType hilb (d - 1) := by
sorry
-- @[BH, 4.1.3] when d = 0
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
theorem Hilbert_polynomial_d_0 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
(hilb : ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
: (∃ (N : ), ∀ (n : ), n ≥ N → hilb n = 0) := by
sorry
-- (reduced version) [BH, 4.1.3] when d = 0
-- If M is a finite graed R-Mod of dimension zero, and M = R 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) = 0 for n >> 0
theorem Hilbert_polynomial_d_0_reduced
(𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
(hilb : ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
(hm : 𝓜 = (fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
: (∃ (N : ), ∀ (n : ), n ≥ N → hilb n = 0) := by
sorry

View file

@ -127,7 +127,6 @@ lemma Poly_constant (F : Polynomial ) (c : ) :
-- Shifting doesn't change the polynomial type -- Shifting doesn't change the polynomial type
lemma Poly_shifting (f : ) (g : ) (hf : PolyType f d) (s : ) (hfg : ∀ (n : ), f (n + s) = g (n)) : PolyType g d := by lemma Poly_shifting (f : ) (g : ) (hf : PolyType f d) (s : ) (hfg : ∀ (n : ), f (n + s) = g (n)) : PolyType g d := by
simp only [PolyType] simp only [PolyType]