From f9e7942a60bf11454d7fea6639d2fff3d2afe202 Mon Sep 17 00:00:00 2001 From: chelseaandmadrid <53058005+chelseaandmadrid@users.noreply.github.com> Date: Wed, 14 Jun 2023 21:13:11 -0700 Subject: [PATCH] Add statements for the reduced case M=R/p --- HilbertFunction.lean | 107 ++++++++++++++++++++++++++++--------------- PolyType.lean | 1 - 2 files changed, 70 insertions(+), 38 deletions(-) diff --git a/HilbertFunction.lean b/HilbertFunction.lean index 21d7eb7..78b5eec 100644 --- a/HilbertFunction.lean +++ b/HilbertFunction.lean @@ -115,7 +115,6 @@ instance Quotient_of_graded_is_graded - -- If A_0 is Artinian and local, then A is graded local lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] @@ -123,40 +122,6 @@ lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : ℤ → Type _) sorry - - - - --- @[BH, 4.1.3] when d ≥ 1 --- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1) -theorem Hilbert_polynomial_ge1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] -[DirectSum.GCommRing 𝒜] -[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) -(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) -(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) -(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb) -: PolyType hilb (d - 1) := by - sorry - - - - --- @[BH, 4.1.3] when d = 0 --- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0 -theorem Hilbert_polynomial_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] -[DirectSum.GCommRing 𝒜] -[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) -(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) -(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0) -(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb) -: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by - sorry - - - - - - -- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] @@ -168,7 +133,6 @@ lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → T - -- @[BH, 1.5.6 (b)(ii)] -- An associated prime of a graded R-Mod M is graded lemma Associated_prime_of_graded_is_graded @@ -185,6 +149,75 @@ lemma Associated_prime_of_graded_is_graded -def Graded_homo : true := by +-- @[BH, 4.1.3] when d ≥ 1 +-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1) +theorem Hilbert_polynomial_d_ge_1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +[DirectSum.GCommRing 𝒜] +[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) +(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) +(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) +(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb) +: PolyType hilb (d - 1) := by sorry + +-- (reduced version) [BH, 4.1.3] when d ≥ 1 +-- If M is a finite graed R-Mod of dimension d ≥ 1, and M = R⧸ 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) is of polynomial type (d - 1) +theorem Hilbert_polynomial_d_ge_1_reduced +(d : ℕ) (d1 : 1 ≤ d) +(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +[DirectSum.GCommRing 𝒜] +[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) +(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) +(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) +(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb) +(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) +(hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i))) +: PolyType hilb (d - 1) := by + sorry + + +-- @[BH, 4.1.3] when d = 0 +-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0 +theorem Hilbert_polynomial_d_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +[DirectSum.GCommRing 𝒜] +[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) +(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) +(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0) +(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb) +: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by + sorry + + +-- (reduced version) [BH, 4.1.3] when d = 0 +-- If M is a finite graed R-Mod of dimension zero, and M = R⧸ 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) = 0 for n >> 0 +theorem Hilbert_polynomial_d_0_reduced +(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +[DirectSum.GCommRing 𝒜] +[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) +(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) +(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0) +(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb) +(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) +(hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i))) +: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by + sorry + + + + + + + + + + + + + + + + + + + diff --git a/PolyType.lean b/PolyType.lean index a81d027..dac965e 100644 --- a/PolyType.lean +++ b/PolyType.lean @@ -127,7 +127,6 @@ lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) : - -- Shifting doesn't change the polynomial type lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by simp only [PolyType]