mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
Add statements for the reduced case M=R/p
This commit is contained in:
parent
191e02e984
commit
f9e7942a60
2 changed files with 70 additions and 38 deletions
|
@ -115,7 +115,6 @@ instance Quotient_of_graded_is_graded
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- If A_0 is Artinian and local, then A is graded local
|
-- If A_0 is Artinian and local, then A is graded local
|
||||||
lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
@ -123,40 +122,6 @@ lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : ℤ → Type _)
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- @[BH, 4.1.3] when d ≥ 1
|
|
||||||
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
|
||||||
theorem Hilbert_polynomial_ge1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜]
|
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
|
||||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
|
||||||
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
|
||||||
: PolyType hilb (d - 1) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- @[BH, 4.1.3] when d = 0
|
|
||||||
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
|
|
||||||
theorem Hilbert_polynomial_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜]
|
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
|
||||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
|
||||||
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
|
||||||
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M
|
-- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M
|
||||||
lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
@ -168,7 +133,6 @@ lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → T
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- @[BH, 1.5.6 (b)(ii)]
|
-- @[BH, 1.5.6 (b)(ii)]
|
||||||
-- An associated prime of a graded R-Mod M is graded
|
-- An associated prime of a graded R-Mod M is graded
|
||||||
lemma Associated_prime_of_graded_is_graded
|
lemma Associated_prime_of_graded_is_graded
|
||||||
|
@ -185,6 +149,75 @@ lemma Associated_prime_of_graded_is_graded
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def Graded_homo : true := by
|
-- @[BH, 4.1.3] when d ≥ 1
|
||||||
|
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
||||||
|
theorem Hilbert_polynomial_d_ge_1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
||||||
|
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||||||
|
: PolyType hilb (d - 1) := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
-- (reduced version) [BH, 4.1.3] when d ≥ 1
|
||||||
|
-- If M is a finite graed R-Mod of dimension d ≥ 1, and M = R⧸ 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
||||||
|
theorem Hilbert_polynomial_d_ge_1_reduced
|
||||||
|
(d : ℕ) (d1 : 1 ≤ d)
|
||||||
|
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
||||||
|
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||||||
|
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||||
|
(hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||||||
|
: PolyType hilb (d - 1) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
-- @[BH, 4.1.3] when d = 0
|
||||||
|
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
|
||||||
|
theorem Hilbert_polynomial_d_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
||||||
|
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
||||||
|
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
-- (reduced version) [BH, 4.1.3] when d = 0
|
||||||
|
-- If M is a finite graed R-Mod of dimension zero, and M = R⧸ 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) = 0 for n >> 0
|
||||||
|
theorem Hilbert_polynomial_d_0_reduced
|
||||||
|
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
||||||
|
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
||||||
|
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||||
|
(hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||||||
|
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -127,7 +127,6 @@ lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- Shifting doesn't change the polynomial type
|
-- Shifting doesn't change the polynomial type
|
||||||
lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by
|
lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by
|
||||||
simp only [PolyType]
|
simp only [PolyType]
|
||||||
|
|
Loading…
Reference in a new issue