mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge branch 'GTBarkley:main' into main
This commit is contained in:
commit
dff6fb21d3
2 changed files with 93 additions and 24 deletions
|
@ -17,6 +17,8 @@ import CommAlg.krull
|
|||
#check JordanHolderLattice
|
||||
|
||||
|
||||
section Chains
|
||||
|
||||
variable {α : Type _} [Preorder α] (s : Set α)
|
||||
|
||||
def finFun_to_list {n : ℕ} : (Fin n → α) → List α := by sorry
|
||||
|
@ -26,7 +28,6 @@ def series_to_chain : StrictSeries s → s.subchain
|
|||
⟨ finFun_to_list (fun x => toFun x),
|
||||
sorry⟩
|
||||
|
||||
|
||||
-- there should be a coercion from WithTop ℕ to WithBot (WithTop ℕ) but it doesn't seem to work
|
||||
-- it looks like this might be because someone changed the instance from CoeCT to Coe during the port
|
||||
-- actually it looks like we can coerce to WithBot (ℕ∞) fine
|
||||
|
@ -40,15 +41,62 @@ lemma twoHeights : s ≠ ∅ → (some (Set.chainHeight s) : WithBot (WithTop
|
|||
-- norm_cast
|
||||
sorry
|
||||
|
||||
end Chains
|
||||
|
||||
section Krull
|
||||
|
||||
variable (R : Type _) [CommRing R] (M : Type _) [AddCommGroup M] [Module R M]
|
||||
|
||||
open Ideal
|
||||
|
||||
lemma krullDim_le_iff' (R : Type _) [CommRing R] :
|
||||
-- chain of primes
|
||||
#check height
|
||||
|
||||
-- lemma height_ge_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
-- height 𝔭 ≥ n ↔ := sorry
|
||||
|
||||
lemma height_ge_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
rcases n with _ | n
|
||||
. constructor <;> intro h <;> exfalso
|
||||
. exact (not_le.mpr h) le_top
|
||||
. -- change ∃c, _ ∧ _ ∧ ((List.length c : ℕ∞) = ⊤ + 1) at h
|
||||
-- rw [WithTop.top_add] at h
|
||||
tauto
|
||||
have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by
|
||||
symm
|
||||
show (n + 1 ≤ m ↔ _ )
|
||||
apply ENat.add_one_le_iff
|
||||
exact ENat.coe_ne_top _
|
||||
rw [this]
|
||||
unfold Ideal.height
|
||||
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
||||
rw [{J | J < 𝔭}.le_chainHeight_iff]
|
||||
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
||||
have h := fun (c : List (PrimeSpectrum R)) => (@WithTop.coe_eq_coe _ (List.length c) n)
|
||||
constructor <;> rintro ⟨c, hc⟩ <;> use c --<;> tauto--<;> exact ⟨hc.1, by tauto⟩
|
||||
. --rw [and_assoc]
|
||||
-- show _ ∧ _ ∧ _
|
||||
--exact ⟨hc.1, _⟩
|
||||
tauto
|
||||
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
|
||||
norm_cast at hc
|
||||
tauto
|
||||
|
||||
lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||||
Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
|
||||
sorry
|
||||
|
||||
lemma krullDim_ge_iff' (R : Type _) [CommRing R] :
|
||||
lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||||
Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
|
||||
|
||||
|
||||
#check (sorry : False)
|
||||
#check (sorryAx)
|
||||
#check (4 : WithBot ℕ∞)
|
||||
#check List.sum
|
||||
-- #check ((4 : ℕ∞) : WithBot (WithTop ℕ))
|
||||
#check ( (Set.chainHeight s) : WithBot (ℕ∞))
|
||||
-- #check ( (Set.chainHeight s) : WithBot (ℕ∞))
|
||||
|
||||
variable (P : PrimeSpectrum R)
|
||||
|
||||
#check {J | J < P}.le_chainHeight_iff (n := 4)
|
||||
|
|
|
@ -4,15 +4,16 @@ import Mathlib.RingTheory.Noetherian
|
|||
import Mathlib.Order.KrullDimension
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Nilpotent
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
|
||||
import Mathlib.Data.Finite.Defs
|
||||
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
import Mathlib.Algebra.Ring.Pi
|
||||
import Mathlib.Topology.NoetherianSpace
|
||||
|
||||
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
|
||||
namespace Ideal
|
||||
|
@ -26,21 +27,9 @@ noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I :
|
|||
|
||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by
|
||||
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by sorry
|
||||
|
||||
|
||||
variable {R : Type _} [CommRing R]
|
||||
|
||||
-- Repeats the definition by Monalisa
|
||||
noncomputable def length : krullDim (Submodule _ _)
|
||||
|
||||
|
||||
-- The following is Stacks Lemma 10.60.5
|
||||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ krull_dim R = 0 ↔ IsArtinianRing R := by
|
||||
|
||||
sorry
|
||||
|
||||
#check IsNoetherianRing
|
||||
|
||||
#check krullDim
|
||||
|
@ -48,7 +37,8 @@ lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
|||
-- Repeats the definition of the length of a module by Monalisa
|
||||
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||||
|
||||
noncomputable def length := krullDim (Submodule R M)
|
||||
-- change the definition of length
|
||||
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||||
|
||||
#check length
|
||||
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||||
|
@ -58,9 +48,42 @@ lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R
|
|||
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
||||
|
||||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||||
lemma Jacobson_of_Artinian_is_nilpotent : Is
|
||||
lemma Jacobson_of_Artinian_is_nilpotent : IsArtinianRing R → IsNilpotent (Ideal.jacobson (⊤ : Ideal R)) := by sorry
|
||||
|
||||
|
||||
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
||||
-- if every element is nilpotent
|
||||
namespace Ideal
|
||||
class IsLocallyNilpotent (I : Ideal R) : Prop :=
|
||||
h : ∀ x ∈ I, IsNilpotent x
|
||||
|
||||
end Ideal
|
||||
|
||||
#check Ideal.IsLocallyNilpotent
|
||||
|
||||
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
||||
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
||||
-- its maximal ideals. Also, all primes are maximal
|
||||
|
||||
lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
|
||||
∧ Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) → Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
|
||||
:= by sorry
|
||||
-- Haven't finished this.
|
||||
|
||||
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
|
||||
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
|
||||
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by sorry
|
||||
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
||||
-- Every closed subset of a noetherian space is a finite union
|
||||
-- of irreducible closed subsets.
|
||||
|
||||
|
||||
-- Stacks Lemma 10.26.1 (Should already exists)
|
||||
-- (1) The closure of a prime P is V(P)
|
||||
-- (2) the irreducible closed subsets are V(P) for P prime
|
||||
-- (3) the irreducible components are V(P) for P minimal prime
|
||||
|
||||
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals. If J ⊂ √I, then J ^ n ⊂ I for some n
|
||||
|
||||
-- how to use namespace
|
||||
|
||||
|
@ -70,8 +93,6 @@ end something
|
|||
|
||||
open something
|
||||
|
||||
-- The following is Stacks Lemma 10.53.6
|
||||
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R R ≤ n := by sorry
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue