Merge pull request #33 from GTBarkley/grant

proved height_ge_iff'
This commit is contained in:
GTBarkley 2023-06-12 21:23:40 -07:00 committed by GitHub
commit 53983475bb
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -17,6 +17,8 @@ import CommAlg.krull
#check JordanHolderLattice
section Chains
variable {α : Type _} [Preorder α] (s : Set α)
def finFun_to_list {n : } : (Fin n → α) → List α := by sorry
@ -26,7 +28,6 @@ def series_to_chain : StrictSeries s → s.subchain
⟨ finFun_to_list (fun x => toFun x),
sorry⟩
-- there should be a coercion from WithTop to WithBot (WithTop ) but it doesn't seem to work
-- it looks like this might be because someone changed the instance from CoeCT to Coe during the port
-- actually it looks like we can coerce to WithBot (ℕ∞) fine
@ -40,15 +41,62 @@ lemma twoHeights : s ≠ ∅ → (some (Set.chainHeight s) : WithBot (WithTop
-- norm_cast
sorry
end Chains
section Krull
variable (R : Type _) [CommRing R] (M : Type _) [AddCommGroup M] [Module R M]
open Ideal
lemma krullDim_le_iff' (R : Type _) [CommRing R] :
-- chain of primes
#check height
-- lemma height_ge_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
-- height 𝔭 ≥ n ↔ := sorry
lemma height_ge_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
rcases n with _ | n
. constructor <;> intro h <;> exfalso
. exact (not_le.mpr h) le_top
. -- change ∃c, _ ∧ _ ∧ ((List.length c : ℕ∞) = + 1) at h
-- rw [WithTop.top_add] at h
tauto
have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by
symm
show (n + 1 ≤ m ↔ _ )
apply ENat.add_one_le_iff
exact ENat.coe_ne_top _
rw [this]
unfold Ideal.height
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ) = (_:ℕ∞))
rw [{J | J < 𝔭}.le_chainHeight_iff]
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
have h := fun (c : List (PrimeSpectrum R)) => (@WithTop.coe_eq_coe _ (List.length c) n)
constructor <;> rintro ⟨c, hc⟩ <;> use c --<;> tauto--<;> exact ⟨hc.1, by tauto⟩
. --rw [and_assoc]
-- show _ ∧ _ ∧ _
--exact ⟨hc.1, _⟩
tauto
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
norm_cast at hc
tauto
lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
sorry
lemma krullDim_ge_iff' (R : Type _) [CommRing R] :
lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
#check (sorry : False)
#check (sorryAx)
#check (4 : WithBot ℕ∞)
#check List.sum
-- #check ((4 : ℕ∞) : WithBot (WithTop ))
#check ( (Set.chainHeight s) : WithBot (ℕ∞))
-- #check ( (Set.chainHeight s) : WithBot (ℕ∞))
variable (P : PrimeSpectrum R)
#check {J | J < P}.le_chainHeight_iff (n := 4)