mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Some minor renames and changes
This commit is contained in:
parent
c5f0eb2081
commit
db3bf05878
1 changed files with 7 additions and 12 deletions
|
@ -63,11 +63,10 @@ lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
||||||
|
|
||||||
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
|
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
|
||||||
@[simp]
|
@[simp]
|
||||||
lemma height_bot_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by
|
lemma height_zero_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = 0 ↔ P = ⊥ := by
|
||||||
constructor
|
constructor
|
||||||
· intro h
|
· intro h
|
||||||
unfold height at h
|
unfold height at h
|
||||||
rw [bot_eq_zero] at h
|
|
||||||
simp only [Set.chainHeight_eq_zero_iff] at h
|
simp only [Set.chainHeight_eq_zero_iff] at h
|
||||||
apply eq_bot_of_minimal
|
apply eq_bot_of_minimal
|
||||||
intro I
|
intro I
|
||||||
|
@ -87,10 +86,6 @@ lemma height_bot_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectru
|
||||||
have := not_lt_of_lt JneP
|
have := not_lt_of_lt JneP
|
||||||
contradiction
|
contradiction
|
||||||
|
|
||||||
@[simp]
|
|
||||||
lemma height_bot_eq {D: Type _} [CommRing D] [IsDomain D] : height (⊥ : PrimeSpectrum D) = ⊥ := by
|
|
||||||
rw [height_bot_iff_bot]
|
|
||||||
|
|
||||||
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
||||||
ideal of height ≥ n. -/
|
ideal of height ≥ n. -/
|
||||||
@[simp]
|
@[simp]
|
||||||
|
@ -307,16 +302,16 @@ lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P =
|
||||||
exact bot_prime
|
exact bot_prime
|
||||||
|
|
||||||
/-- In a field, all primes have height 0. -/
|
/-- In a field, all primes have height 0. -/
|
||||||
lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] (P : PrimeSpectrum K) : height P = ⊥ := by
|
lemma field_prime_height_zero {K: Type _} [Nontrivial K] [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
||||||
have : IsPrime P.asIdeal := P.IsPrime
|
have : IsPrime P.asIdeal := P.IsPrime
|
||||||
rw [field_prime_bot] at this
|
rw [field_prime_bot] at this
|
||||||
have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
|
have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
|
||||||
rwa [height_bot_iff_bot]
|
rwa [height_zero_iff_bot]
|
||||||
|
|
||||||
/-- The Krull dimension of a field is 0. -/
|
/-- The Krull dimension of a field is 0. -/
|
||||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||||
unfold krullDim
|
unfold krullDim
|
||||||
simp only [field_prime_height_bot, ciSup_unique]
|
simp only [field_prime_height_zero, ciSup_unique]
|
||||||
|
|
||||||
/-- A domain with Krull dimension 0 is a field. -/
|
/-- A domain with Krull dimension 0 is a field. -/
|
||||||
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||||
|
@ -377,7 +372,7 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
|
||||||
rw [dim_le_one_iff]
|
rw [dim_le_one_iff]
|
||||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||||
|
|
||||||
private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] : Set.chainHeight {(⊥ : α)} ≤ 1 := by
|
private lemma singleton_chainHeight_le_one {α : Type _} {x : α} [Preorder α] : Set.chainHeight {x} ≤ 1 := by
|
||||||
unfold Set.chainHeight
|
unfold Set.chainHeight
|
||||||
simp only [iSup_le_iff, Nat.cast_le_one]
|
simp only [iSup_le_iff, Nat.cast_le_one]
|
||||||
intro L h
|
intro L h
|
||||||
|
@ -401,7 +396,7 @@ lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullD
|
||||||
intro I
|
intro I
|
||||||
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
|
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
|
||||||
by_cases I = ⊥
|
by_cases I = ⊥
|
||||||
· rw [← height_bot_iff_bot] at h
|
· rw [← height_zero_iff_bot] at h
|
||||||
simp only [WithBot.coe_le_one, ge_iff_le]
|
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||||
rw [h]
|
rw [h]
|
||||||
exact bot_le
|
exact bot_le
|
||||||
|
@ -437,7 +432,7 @@ lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullD
|
||||||
unfold height
|
unfold height
|
||||||
rw [sngletn]
|
rw [sngletn]
|
||||||
simp only [WithBot.coe_le_one, ge_iff_le]
|
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||||
exact singleton_bot_chainHeight_one
|
exact singleton_chainHeight_le_one
|
||||||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||||
· obtain ⟨I, h⟩ := this
|
· obtain ⟨I, h⟩ := this
|
||||||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||||
|
|
Loading…
Reference in a new issue