mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
Merge pull request #20 from GTBarkley/leo
updated krull_dim name, addd krullDim_le_iff
This commit is contained in:
commit
d9f67a1075
1 changed files with 20 additions and 8 deletions
|
@ -5,6 +5,7 @@ import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
import Mathlib.RingTheory.Ideal.Quotient
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
import Mathlib.RingTheory.Localization.AtPrime
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
|
|
||||||
/- This file contains the definitions of height of an ideal, and the krull
|
/- This file contains the definitions of height of an ideal, and the krull
|
||||||
dimension of a commutative ring.
|
dimension of a commutative ring.
|
||||||
|
@ -22,26 +23,37 @@ variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||||
|
|
||||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||||
|
|
||||||
noncomputable def krull_dim (R : Type) [CommRing R]: WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||||
|
|
||||||
|
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||||
|
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||||
|
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||||
|
|
||||||
|
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||||
|
|
||||||
|
lemma krullDim_le_iff (R : Type) [CommRing R] (n : ℕ) :
|
||||||
|
iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) ≤ n ↔
|
||||||
|
∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := by
|
||||||
|
convert @iSup_le_iff (WithBot ℕ∞) (PrimeSpectrum R) inferInstance _ (↑n)
|
||||||
|
|
||||||
--some propositions that would be nice to be able to eventually
|
--some propositions that would be nice to be able to eventually
|
||||||
|
|
||||||
lemma dim_eq_zero_iff_field : krull_dim R = 0 ↔ IsField R := by sorry
|
lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry
|
||||||
|
|
||||||
#check Ring.DimensionLEOne
|
#check Ring.DimensionLEOne
|
||||||
lemma dim_le_one_iff : krull_dim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
||||||
|
|
||||||
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krull_dim R ≤ 1 := by
|
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 := by
|
||||||
rw [dim_le_one_iff]
|
rw [dim_le_one_iff]
|
||||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||||
|
|
||||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||||
krull_dim R ≤ krull_dim (Polynomial R) + 1 := sorry
|
krullDim R ≤ krullDim (Polynomial R) + 1 := sorry
|
||||||
|
|
||||||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||||
krull_dim R = krull_dim (Polynomial R) + 1 := sorry
|
krullDim R = krullDim (Polynomial R) + 1 := sorry
|
||||||
|
|
||||||
lemma height_eq_dim_localization :
|
lemma height_eq_dim_localization :
|
||||||
height I = krull_dim (Localization.AtPrime I.asIdeal) := sorry
|
height I = krullDim (Localization.AtPrime I.asIdeal) := sorry
|
||||||
|
|
||||||
lemma height_add_dim_quotient_le_dim : height I + krull_dim (R ⧸ I.asIdeal) ≤ krull_dim R := sorry
|
lemma height_add_dim_quotient_le_dim : height I + krullDim (R ⧸ I.asIdeal) ≤ krullDim R := sorry
|
Loading…
Reference in a new issue