From 6d4b9b0f60663df52862416f24a8ee4555db4ae9 Mon Sep 17 00:00:00 2001 From: leopoldmayer Date: Mon, 12 Jun 2023 09:49:40 -0700 Subject: [PATCH] updated krull_dim name, addd krullDim_le_iff --- comm_alg/krull.lean | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-) diff --git a/comm_alg/krull.lean b/comm_alg/krull.lean index 5204b9a..1bd2829 100644 --- a/comm_alg/krull.lean +++ b/comm_alg/krull.lean @@ -5,6 +5,7 @@ import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Localization.AtPrime import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic +import Mathlib.Order.ConditionallyCompleteLattice.Basic /- This file contains the definitions of height of an ideal, and the krull dimension of a commutative ring. @@ -22,26 +23,37 @@ variable {R : Type _} [CommRing R] (I : PrimeSpectrum R) noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I} -noncomputable def krull_dim (R : Type) [CommRing R]: WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I +noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I + +lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl +lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl +lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl + +noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice + +lemma krullDim_le_iff (R : Type) [CommRing R] (n : ℕ) : + iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) ≤ n ↔ + ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := by + convert @iSup_le_iff (WithBot ℕ∞) (PrimeSpectrum R) inferInstance _ (↑n) --some propositions that would be nice to be able to eventually -lemma dim_eq_zero_iff_field : krull_dim R = 0 ↔ IsField R := by sorry +lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry #check Ring.DimensionLEOne -lemma dim_le_one_iff : krull_dim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry +lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry -lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krull_dim R ≤ 1 := by +lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 := by rw [dim_le_one_iff] exact Ring.DimensionLEOne.principal_ideal_ring R lemma dim_le_dim_polynomial_add_one [Nontrivial R] : - krull_dim R ≤ krull_dim (Polynomial R) + 1 := sorry + krullDim R ≤ krullDim (Polynomial R) + 1 := sorry lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] : - krull_dim R = krull_dim (Polynomial R) + 1 := sorry + krullDim R = krullDim (Polynomial R) + 1 := sorry lemma height_eq_dim_localization : - height I = krull_dim (Localization.AtPrime I.asIdeal) := sorry + height I = krullDim (Localization.AtPrime I.asIdeal) := sorry -lemma height_add_dim_quotient_le_dim : height I + krull_dim (R ⧸ I.asIdeal) ≤ krull_dim R := sorry \ No newline at end of file +lemma height_add_dim_quotient_le_dim : height I + krullDim (R ⧸ I.asIdeal) ≤ krullDim R := sorry \ No newline at end of file