mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
Merge pull request #9 from GTBarkley/grant
added more references to mathlib to readme
This commit is contained in:
commit
d28fcc1b57
1 changed files with 9 additions and 2 deletions
11
README.md
11
README.md
|
@ -9,6 +9,8 @@ Feel free to add, modify, and expand this file. Below are starting points for th
|
|||
- Definitions of an ideal, prime ideal, and maximal ideal:
|
||||
```lean
|
||||
def Mathlib.RingTheory.Ideal.Basic.Ideal (R : Type u) [Semiring R] := Submodule R R
|
||||
class Mathlib.RingTheory.Ideal.Basic.IsPrime (I : Ideal α) : Prop
|
||||
class IsMaximal (I : Ideal α) : Prop
|
||||
```
|
||||
|
||||
- Definition of a Spec of a ring: `Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic.PrimeSpectrum`
|
||||
|
@ -16,9 +18,14 @@ def Mathlib.RingTheory.Ideal.Basic.Ideal (R : Type u) [Semiring R] := Submodule
|
|||
- Definition of a Noetherian and Artinian rings:
|
||||
```lean
|
||||
class Mathlib.RingTheory.Noetherian.IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop
|
||||
class Mathlib.RingTheory.Artinian.IsArtinian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop
|
||||
```
|
||||
- Definition of a polynomial ring: `Mathlib.RingTheory.Polynomial.Basic`
|
||||
|
||||
- Definitions of a local ring and quotient ring
|
||||
- Definitions of a local ring and quotient ring: `Mathlib.RingTheory.Ideal.Quotient.?`
|
||||
```lean
|
||||
class Mathlib.RingTheory.Ideal.LocalRing.LocalRing (R : Type u) [Semiring R] extends Nontrivial R : Prop
|
||||
```
|
||||
|
||||
- Definition of the chain of prime ideals and the length of these chains
|
||||
|
||||
|
@ -31,7 +38,7 @@ Give Examples of each of the above cases for a particular instances of ring
|
|||
|
||||
Theorem 0: Hilbert Basis Theorem:
|
||||
```lean
|
||||
instance isNoetherianRing [Finite σ] [IsNoetherianRing R] : IsNoetherianRing (MvPolynomial σ R)
|
||||
theorem Mathlib.RingTheory.Polynomial.Basic.Polynomial.isNoetherianRing [inst : IsNoetherianRing R] : IsNoetherianRing R[X]
|
||||
```
|
||||
|
||||
Theorem 1: If A is a nonzero ring, then dim A[t] >= dim A +1
|
||||
|
|
Loading…
Reference in a new issue