From 9a08a5927441d3c59831b1a5e07629b68a51f782 Mon Sep 17 00:00:00 2001 From: GTBarkley <67718465+GTBarkley@users.noreply.github.com> Date: Sat, 10 Jun 2023 18:40:48 -0400 Subject: [PATCH 1/2] added more references to readme --- README.md | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index d3e6216..058a6e8 100644 --- a/README.md +++ b/README.md @@ -9,6 +9,8 @@ Feel free to add, modify, and expand this file. Below are starting points for th - Definitions of an ideal, prime ideal, and maximal ideal: ```lean def Mathlib.RingTheory.Ideal.Basic.Ideal (R : Type u) [Semiring R] := Submodule R R +class Mathlib.RingTheory.Ideal.Basic.IsPrime (I : Ideal α) : Prop +class IsMaximal (I : Ideal α) : Prop ``` - Definition of a Spec of a ring: `Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic.PrimeSpectrum` @@ -31,7 +33,7 @@ Give Examples of each of the above cases for a particular instances of ring Theorem 0: Hilbert Basis Theorem: ```lean -instance isNoetherianRing [Finite σ] [IsNoetherianRing R] : IsNoetherianRing (MvPolynomial σ R) +theorem Mathlib.RingTheory.Polynomial.Basic.Polynomial.isNoetherianRing [inst : IsNoetherianRing R] : IsNoetherianRing R[X] ``` Theorem 1: If A is a nonzero ring, then dim A[t] >= dim A +1 From 506fd9b4d6591a7f26143f7ed2355f1e64c07a4b Mon Sep 17 00:00:00 2001 From: GTBarkley <67718465+GTBarkley@users.noreply.github.com> Date: Sat, 10 Jun 2023 18:53:44 -0400 Subject: [PATCH 2/2] added more references to mathlib to readme --- README.md | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 058a6e8..3c5bba6 100644 --- a/README.md +++ b/README.md @@ -18,9 +18,14 @@ class IsMaximal (I : Ideal α) : Prop - Definition of a Noetherian and Artinian rings: ```lean class Mathlib.RingTheory.Noetherian.IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop +class Mathlib.RingTheory.Artinian.IsArtinian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop ``` +- Definition of a polynomial ring: `Mathlib.RingTheory.Polynomial.Basic` -- Definitions of a local ring and quotient ring +- Definitions of a local ring and quotient ring: `Mathlib.RingTheory.Ideal.Quotient.?` +```lean +class Mathlib.RingTheory.Ideal.LocalRing.LocalRing (R : Type u) [Semiring R] extends Nontrivial R : Prop +``` - Definition of the chain of prime ideals and the length of these chains