mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
Merge pull request #34 from GTBarkley/sayantan
new: Made some progress on the other side of dim_eq_zero_iff_field
This commit is contained in:
commit
cb35208541
1 changed files with 29 additions and 25 deletions
|
@ -6,40 +6,24 @@ import Mathlib.RingTheory.Ideal.Quotient
|
||||||
import Mathlib.RingTheory.Localization.AtPrime
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
-- import Mathlib.Data.ENat.Lattice
|
|
||||||
-- import Mathlib.Order.OrderIsoNat
|
|
||||||
-- import Mathlib.Tactic.TFAE
|
|
||||||
|
|
||||||
namespace Ideal
|
namespace Ideal
|
||||||
|
|
||||||
-- def foo : List Nat := [1, 2, 3, 4, 5]
|
|
||||||
|
|
||||||
-- #check List.Chain'
|
|
||||||
|
|
||||||
-- example : List.Chain' (· < ·) foo := by
|
|
||||||
-- repeat { constructor; norm_num }
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
example (x : Nat) : List.Chain' (· < ·) [x] := by
|
example (x : Nat) : List.Chain' (· < ·) [x] := by
|
||||||
constructor
|
constructor
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||||
|
|
||||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||||
|
|
||||||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||||
|
|
||||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||||
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||||
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||||
|
|
||||||
variable {K : Type _} [Field K]
|
@[simp]
|
||||||
|
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||||||
lemma dim_field_eq_zero : krullDim K = 0 := by
|
|
||||||
have prime_bot (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
|
||||||
constructor
|
constructor
|
||||||
· intro primeP
|
· intro primeP
|
||||||
obtain T := eq_bot_or_top P
|
obtain T := eq_bot_or_top P
|
||||||
|
@ -48,9 +32,8 @@ lemma dim_field_eq_zero : krullDim K = 0 := by
|
||||||
· intro botP
|
· intro botP
|
||||||
rw [botP]
|
rw [botP]
|
||||||
exact bot_prime
|
exact bot_prime
|
||||||
unfold krullDim
|
|
||||||
have height_zero : ∀ P : PrimeSpectrum K, height P = 0 := by
|
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
||||||
intro P
|
|
||||||
unfold height
|
unfold height
|
||||||
simp
|
simp
|
||||||
by_contra spec
|
by_contra spec
|
||||||
|
@ -59,9 +42,30 @@ lemma dim_field_eq_zero : krullDim K = 0 := by
|
||||||
obtain ⟨J, JlP : J < P⟩ := spec
|
obtain ⟨J, JlP : J < P⟩ := spec
|
||||||
have P0 : IsPrime P.asIdeal := P.IsPrime
|
have P0 : IsPrime P.asIdeal := P.IsPrime
|
||||||
have J0 : IsPrime J.asIdeal := J.IsPrime
|
have J0 : IsPrime J.asIdeal := J.IsPrime
|
||||||
rw [prime_bot] at P0 J0
|
rw [field_prime_bot] at P0 J0
|
||||||
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
||||||
have JeqP : J = P := PrimeSpectrum.ext J P this
|
have : J = P := PrimeSpectrum.ext J P this
|
||||||
have JneqP : J ≠ P := ne_of_lt JlP
|
have : J ≠ P := ne_of_lt JlP
|
||||||
contradiction
|
contradiction
|
||||||
simp [height_zero]
|
|
||||||
|
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||||
|
unfold krullDim
|
||||||
|
simp [field_prime_height_zero]
|
||||||
|
|
||||||
|
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||||
|
unfold krullDim at h
|
||||||
|
simp [height] at h
|
||||||
|
by_contra x
|
||||||
|
rw [Ring.not_isField_iff_exists_prime] at x
|
||||||
|
obtain ⟨P, ⟨h, primeP⟩⟩ := x
|
||||||
|
have PgtBot : P > ⊥ := Ne.bot_lt h
|
||||||
|
sorry
|
||||||
|
|
||||||
|
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||||
|
constructor
|
||||||
|
· exact isField.dim_zero
|
||||||
|
· intro fieldD
|
||||||
|
have : Field D := IsField.toField fieldD
|
||||||
|
-- Not exactly sure why this is failing
|
||||||
|
-- apply @dim_field_eq_zero D _
|
||||||
|
sorry
|
||||||
|
|
Loading…
Reference in a new issue