Merge pull request #34 from GTBarkley/sayantan

new: Made some progress on the other side of dim_eq_zero_iff_field
This commit is contained in:
Sayantan Santra 2023-06-12 23:57:45 -05:00 committed by GitHub
commit cb35208541
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -6,40 +6,24 @@ import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.ConditionallyCompleteLattice.Basic
-- import Mathlib.Data.ENat.Lattice
-- import Mathlib.Order.OrderIsoNat
-- import Mathlib.Tactic.TFAE
namespace Ideal
-- def foo : List Nat := [1, 2, 3, 4, 5]
-- #check List.Chain'
-- example : List.Chain' (· < ·) foo := by
-- repeat { constructor; norm_num }
example (x : Nat) : List.Chain' (· < ·) [x] := by
constructor
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
variable {K : Type _} [Field K]
lemma dim_field_eq_zero : krullDim K = 0 := by
have prime_bot (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
@[simp]
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
constructor
· intro primeP
obtain T := eq_bot_or_top P
@ -48,9 +32,8 @@ lemma dim_field_eq_zero : krullDim K = 0 := by
· intro botP
rw [botP]
exact bot_prime
unfold krullDim
have height_zero : ∀ P : PrimeSpectrum K, height P = 0 := by
intro P
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
unfold height
simp
by_contra spec
@ -59,9 +42,30 @@ lemma dim_field_eq_zero : krullDim K = 0 := by
obtain ⟨J, JlP : J < P⟩ := spec
have P0 : IsPrime P.asIdeal := P.IsPrime
have J0 : IsPrime J.asIdeal := J.IsPrime
rw [prime_bot] at P0 J0
rw [field_prime_bot] at P0 J0
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
have JeqP : J = P := PrimeSpectrum.ext J P this
have JneqP : J ≠ P := ne_of_lt JlP
have : J = P := PrimeSpectrum.ext J P this
have : J ≠ P := ne_of_lt JlP
contradiction
simp [height_zero]
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
unfold krullDim
simp [field_prime_height_zero]
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
unfold krullDim at h
simp [height] at h
by_contra x
rw [Ring.not_isField_iff_exists_prime] at x
obtain ⟨P, ⟨h, primeP⟩⟩ := x
have PgtBot : P > ⊥ := Ne.bot_lt h
sorry
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
constructor
· exact isField.dim_zero
· intro fieldD
have : Field D := IsField.toField fieldD
-- Not exactly sure why this is failing
-- apply @dim_field_eq_zero D _
sorry