Add the whole proof back since I just noticed that I had replaced them by sorried statements

This commit is contained in:
Sayantan Santra 2023-06-16 11:37:19 -07:00
parent f76ff450e7
commit c5f0eb2081
Signed by: SinTan1729
GPG key ID: EB3E68BFBA25C85F
2 changed files with 59 additions and 3 deletions

View file

@ -377,12 +377,67 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
rw [dim_le_one_iff] rw [dim_le_one_iff]
exact Ring.DimensionLEOne.principal_ideal_ring R exact Ring.DimensionLEOne.principal_ideal_ring R
private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] : Set.chainHeight {(⊥ : α)} ≤ 1 := by
unfold Set.chainHeight
simp only [iSup_le_iff, Nat.cast_le_one]
intro L h
unfold Set.subchain at h
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at h
rcases L with (_ | ⟨a,L⟩)
. simp only [List.length_nil, zero_le]
rcases L with (_ | ⟨b,L⟩)
. simp only [List.length_singleton, le_refl]
simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h
rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩
exact absurd h1 (lt_irrefl _)
/-- The ring of polynomials over a field has dimension one. -/ /-- The ring of polynomials over a field has dimension one. -/
lemma polynomial_over_field_dim_one {K : Type _} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
rw [le_antisymm_iff] rw [le_antisymm_iff]
let X := @Polynomial.X K _ let X := @Polynomial.X K _
constructor constructor
· exact dim_le_one_of_pid · unfold krullDim
apply @iSup_le (WithBot ℕ∞) _ _ _ _
intro I
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
by_cases I = ⊥
· rw [← height_bot_iff_bot] at h
simp only [WithBot.coe_le_one, ge_iff_le]
rw [h]
exact bot_le
· push_neg at h
have : I.asIdeal ≠ ⊥ := by
by_contra a
have : I = ⊥ := PrimeSpectrum.ext I ⊥ a
contradiction
have maxI := IsPrime.to_maximal_ideal this
have sngletn : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
intro P
constructor
· intro H
simp only [Set.mem_setOf_eq] at H
by_contra x
push_neg at x
have : P.asIdeal ≠ ⊥ := by
by_contra a
have : P = ⊥ := PrimeSpectrum.ext P ⊥ a
contradiction
have maxP := IsPrime.to_maximal_ideal this
have IneTop := IsMaximal.ne_top maxI
have : P ≤ I := le_of_lt H
rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this
have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this
have : P = I := PrimeSpectrum.ext P I this
replace H : P ≠ I := ne_of_lt H
contradiction
· intro pBot
simp only [Set.mem_setOf_eq, pBot]
exact lt_of_le_of_ne bot_le h.symm
replace sngletn : {J | J < I} = {⊥} := Set.ext sngletn
unfold height
rw [sngletn]
simp only [WithBot.coe_le_one, ge_iff_le]
exact singleton_bot_chainHeight_one
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞) · suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
· obtain ⟨I, h⟩ := this · obtain ⟨I, h⟩ := this
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by

View file

@ -22,7 +22,8 @@ private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] :
exact absurd h1 (lt_irrefl _) exact absurd h1 (lt_irrefl _)
/-- The ring of polynomials over a field has dimension one. -/ /-- The ring of polynomials over a field has dimension one. -/
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by -- It's the exact same lemma as in krull.lean, added ' to avoid conflict
lemma polynomial_over_field_dim_one' {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
rw [le_antisymm_iff] rw [le_antisymm_iff]
let X := @Polynomial.X K _ let X := @Polynomial.X K _
constructor constructor