diff --git a/CommAlg/krull.lean b/CommAlg/krull.lean index e26837f..574ffc5 100644 --- a/CommAlg/krull.lean +++ b/CommAlg/krull.lean @@ -377,12 +377,67 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 rw [dim_le_one_iff] exact Ring.DimensionLEOne.principal_ideal_ring R +private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] : Set.chainHeight {(⊥ : α)} ≤ 1 := by + unfold Set.chainHeight + simp only [iSup_le_iff, Nat.cast_le_one] + intro L h + unfold Set.subchain at h + simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at h + rcases L with (_ | ⟨a,L⟩) + . simp only [List.length_nil, zero_le] + rcases L with (_ | ⟨b,L⟩) + . simp only [List.length_singleton, le_refl] + simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h + rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩ + exact absurd h1 (lt_irrefl _) + /-- The ring of polynomials over a field has dimension one. -/ -lemma polynomial_over_field_dim_one {K : Type _} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by +lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by rw [le_antisymm_iff] let X := @Polynomial.X K _ constructor - · exact dim_le_one_of_pid + · unfold krullDim + apply @iSup_le (WithBot ℕ∞) _ _ _ _ + intro I + have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance + by_cases I = ⊥ + · rw [← height_bot_iff_bot] at h + simp only [WithBot.coe_le_one, ge_iff_le] + rw [h] + exact bot_le + · push_neg at h + have : I.asIdeal ≠ ⊥ := by + by_contra a + have : I = ⊥ := PrimeSpectrum.ext I ⊥ a + contradiction + have maxI := IsPrime.to_maximal_ideal this + have sngletn : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by + intro P + constructor + · intro H + simp only [Set.mem_setOf_eq] at H + by_contra x + push_neg at x + have : P.asIdeal ≠ ⊥ := by + by_contra a + have : P = ⊥ := PrimeSpectrum.ext P ⊥ a + contradiction + have maxP := IsPrime.to_maximal_ideal this + have IneTop := IsMaximal.ne_top maxI + have : P ≤ I := le_of_lt H + rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this + have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this + have : P = I := PrimeSpectrum.ext P I this + replace H : P ≠ I := ne_of_lt H + contradiction + · intro pBot + simp only [Set.mem_setOf_eq, pBot] + exact lt_of_le_of_ne bot_le h.symm + replace sngletn : {J | J < I} = {⊥} := Set.ext sngletn + unfold height + rw [sngletn] + simp only [WithBot.coe_le_one, ge_iff_le] + exact singleton_bot_chainHeight_one · suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞) · obtain ⟨I, h⟩ := this have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by diff --git a/CommAlg/sayantan(poly_over_field).lean b/CommAlg/sayantan(poly_over_field).lean index 48aa955..d7c1369 100644 --- a/CommAlg/sayantan(poly_over_field).lean +++ b/CommAlg/sayantan(poly_over_field).lean @@ -22,7 +22,8 @@ private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] : exact absurd h1 (lt_irrefl _) /-- The ring of polynomials over a field has dimension one. -/ -lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by +-- It's the exact same lemma as in krull.lean, added ' to avoid conflict +lemma polynomial_over_field_dim_one' {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by rw [le_antisymm_iff] let X := @Polynomial.X K _ constructor