mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
Merge pull request #87 from SinTan1729/main
Almost completed polynomial_over_field_dim_one
This commit is contained in:
commit
bcb867258a
2 changed files with 90 additions and 21 deletions
|
@ -19,6 +19,7 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
developed.
|
developed.
|
||||||
-/
|
-/
|
||||||
|
|
||||||
|
/-- If something is smaller that Bot of a PartialOrder after attaching another Bot, it must be Bot. -/
|
||||||
lemma lt_bot_eq_WithBot_bot [PartialOrder α] [OrderBot α] {a : WithBot α} (h : a < (⊥ : α)) : a = ⊥ := by
|
lemma lt_bot_eq_WithBot_bot [PartialOrder α] [OrderBot α] {a : WithBot α} (h : a < (⊥ : α)) : a = ⊥ := by
|
||||||
cases a
|
cases a
|
||||||
. rfl
|
. rfl
|
||||||
|
@ -29,18 +30,19 @@ open LocalRing
|
||||||
|
|
||||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||||
|
|
||||||
|
/-- Definitions -/
|
||||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||||
|
|
||||||
noncomputable def krullDim (R : Type _) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
noncomputable def krullDim (R : Type _) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||||
|
|
||||||
noncomputable def codimension (J : Ideal R) : WithBot ℕ∞ := ⨅ I ∈ {I : PrimeSpectrum R | J ≤ I.asIdeal}, height I
|
noncomputable def codimension (J : Ideal R) : WithBot ℕ∞ := ⨅ I ∈ {I : PrimeSpectrum R | J ≤ I.asIdeal}, height I
|
||||||
|
|
||||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||||
lemma krullDim_def (R : Type _) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
lemma krullDim_def (R : Type _) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||||
lemma krullDim_def' (R : Type _) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
lemma krullDim_def' (R : Type _) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||||
|
|
||||||
|
/-- A lattice structure on WithBot ℕ∞. -/
|
||||||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||||
|
|
||||||
|
/-- Height of ideals is monotonic. -/
|
||||||
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := by
|
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := by
|
||||||
apply Set.chainHeight_mono
|
apply Set.chainHeight_mono
|
||||||
intro J' hJ'
|
intro J' hJ'
|
||||||
|
@ -57,6 +59,34 @@ lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
||||||
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
||||||
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
||||||
|
|
||||||
|
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
|
||||||
|
@[simp]
|
||||||
|
lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by
|
||||||
|
constructor
|
||||||
|
· intro h
|
||||||
|
unfold height at h
|
||||||
|
rw [bot_eq_zero] at h
|
||||||
|
simp only [Set.chainHeight_eq_zero_iff] at h
|
||||||
|
apply eq_bot_of_minimal
|
||||||
|
intro I
|
||||||
|
by_contra x
|
||||||
|
have : I ∈ {J | J < P} := x
|
||||||
|
rw [h] at this
|
||||||
|
contradiction
|
||||||
|
· intro h
|
||||||
|
unfold height
|
||||||
|
simp only [bot_eq_zero', Set.chainHeight_eq_zero_iff]
|
||||||
|
by_contra spec
|
||||||
|
change _ ≠ _ at spec
|
||||||
|
rw [← Set.nonempty_iff_ne_empty] at spec
|
||||||
|
obtain ⟨J, JlP : J < P⟩ := spec
|
||||||
|
have JneP : J ≠ P := ne_of_lt JlP
|
||||||
|
rw [h, ←bot_lt_iff_ne_bot, ←h] at JneP
|
||||||
|
have := not_lt_of_lt JneP
|
||||||
|
contradiction
|
||||||
|
|
||||||
|
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
||||||
|
ideal of height ≥ n. -/
|
||||||
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by
|
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by
|
||||||
constructor
|
constructor
|
||||||
|
@ -230,9 +260,9 @@ lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal
|
||||||
. exact List.chain'_singleton _
|
. exact List.chain'_singleton _
|
||||||
. constructor
|
. constructor
|
||||||
. intro I' hI'
|
. intro I' hI'
|
||||||
simp at hI'
|
simp only [List.mem_singleton] at hI'
|
||||||
rwa [hI']
|
rwa [hI']
|
||||||
. simp
|
. simp only [List.length_singleton, Nat.cast_one, zero_add]
|
||||||
. contrapose! h
|
. contrapose! h
|
||||||
change (0 : ℕ∞) < (_ : WithBot ℕ∞) at h
|
change (0 : ℕ∞) < (_ : WithBot ℕ∞) at h
|
||||||
rw [lt_height_iff''] at h
|
rw [lt_height_iff''] at h
|
||||||
|
@ -259,7 +289,7 @@ lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum
|
||||||
|
|
||||||
/-- In a field, the unique prime ideal is the zero ideal. -/
|
/-- In a field, the unique prime ideal is the zero ideal. -/
|
||||||
@[simp]
|
@[simp]
|
||||||
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P = ⊥ := by
|
||||||
constructor
|
constructor
|
||||||
· intro primeP
|
· intro primeP
|
||||||
obtain T := eq_bot_or_top P
|
obtain T := eq_bot_or_top P
|
||||||
|
@ -270,9 +300,16 @@ lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P =
|
||||||
exact bot_prime
|
exact bot_prime
|
||||||
|
|
||||||
/-- In a field, all primes have height 0. -/
|
/-- In a field, all primes have height 0. -/
|
||||||
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] {P : PrimeSpectrum K} : height P = ⊥ := by
|
||||||
|
-- This should be doable by
|
||||||
|
-- have : IsPrime P.asIdeal := P.IsPrime
|
||||||
|
-- rw [field_prime_bot] at this
|
||||||
|
-- have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
|
||||||
|
-- rw [height_bot_iff_bot]
|
||||||
|
-- Need to check what's happening
|
||||||
|
rw [bot_eq_zero]
|
||||||
unfold height
|
unfold height
|
||||||
simp
|
simp only [Set.chainHeight_eq_zero_iff]
|
||||||
by_contra spec
|
by_contra spec
|
||||||
change _ ≠ _ at spec
|
change _ ≠ _ at spec
|
||||||
rw [← Set.nonempty_iff_ne_empty] at spec
|
rw [← Set.nonempty_iff_ne_empty] at spec
|
||||||
|
@ -288,7 +325,7 @@ lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : heig
|
||||||
/-- The Krull dimension of a field is 0. -/
|
/-- The Krull dimension of a field is 0. -/
|
||||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||||
unfold krullDim
|
unfold krullDim
|
||||||
simp [field_prime_height_zero]
|
simp only [field_prime_height_bot, ciSup_unique]
|
||||||
|
|
||||||
/-- A domain with Krull dimension 0 is a field. -/
|
/-- A domain with Krull dimension 0 is a field. -/
|
||||||
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||||
|
@ -335,7 +372,7 @@ lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
|
||||||
rcases (lt_height_iff''.mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
|
rcases (lt_height_iff''.mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
|
||||||
norm_cast at hc3
|
norm_cast at hc3
|
||||||
rw [List.chain'_iff_get] at hc1
|
rw [List.chain'_iff_get] at hc1
|
||||||
specialize hc1 0 (by rw [hc3]; simp)
|
specialize hc1 0 (by rw [hc3]; simp only)
|
||||||
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
|
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
|
||||||
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
|
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
|
||||||
specialize hc2 q1 (List.get_mem _ _ _)
|
specialize hc2 q1 (List.get_mem _ _ _)
|
||||||
|
|
|
@ -1,39 +1,71 @@
|
||||||
import CommAlg.krull
|
import CommAlg.krull
|
||||||
import Mathlib.RingTheory.Ideal.Operations
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
import Mathlib.RingTheory.FiniteType
|
|
||||||
import Mathlib.Order.Height
|
import Mathlib.Order.Height
|
||||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
import Mathlib.RingTheory.Ideal.Quotient
|
|
||||||
import Mathlib.RingTheory.Ideal.MinimalPrime
|
|
||||||
import Mathlib.RingTheory.Localization.AtPrime
|
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|
||||||
|
|
||||||
namespace Ideal
|
namespace Ideal
|
||||||
|
|
||||||
|
/-- The ring of polynomials over a field has dimension one. -/
|
||||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||||
-- unfold krullDim
|
|
||||||
rw [le_antisymm_iff]
|
rw [le_antisymm_iff]
|
||||||
|
let X := @Polynomial.X K _
|
||||||
constructor
|
constructor
|
||||||
·
|
· unfold krullDim
|
||||||
sorry
|
apply @iSup_le (WithBot ℕ∞) _ _ _ _
|
||||||
|
intro I
|
||||||
|
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
|
||||||
|
by_cases I = ⊥
|
||||||
|
· rw [← height_bot_iff_bot] at h
|
||||||
|
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||||
|
rw [h]
|
||||||
|
exact bot_le
|
||||||
|
· push_neg at h
|
||||||
|
have : I.asIdeal ≠ ⊥ := by
|
||||||
|
by_contra a
|
||||||
|
have : I = ⊥ := PrimeSpectrum.ext I ⊥ a
|
||||||
|
contradiction
|
||||||
|
have maxI := IsPrime.to_maximal_ideal this
|
||||||
|
have singleton : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
|
||||||
|
intro P
|
||||||
|
constructor
|
||||||
|
· intro H
|
||||||
|
simp only [Set.mem_setOf_eq] at H
|
||||||
|
by_contra x
|
||||||
|
push_neg at x
|
||||||
|
have : P.asIdeal ≠ ⊥ := by
|
||||||
|
by_contra a
|
||||||
|
have : P = ⊥ := PrimeSpectrum.ext P ⊥ a
|
||||||
|
contradiction
|
||||||
|
have maxP := IsPrime.to_maximal_ideal this
|
||||||
|
have IneTop := IsMaximal.ne_top maxI
|
||||||
|
have : P ≤ I := le_of_lt H
|
||||||
|
rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this
|
||||||
|
have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this
|
||||||
|
have : P = I := PrimeSpectrum.ext P I this
|
||||||
|
replace H : P ≠ I := ne_of_lt H
|
||||||
|
contradiction
|
||||||
|
· intro pBot
|
||||||
|
simp only [Set.mem_setOf_eq, pBot]
|
||||||
|
exact lt_of_le_of_ne bot_le h.symm
|
||||||
|
replace singleton : {J | J < I} = {⊥} := Set.ext singleton
|
||||||
|
unfold height
|
||||||
|
sorry
|
||||||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||||
· obtain ⟨I, h⟩ := this
|
· obtain ⟨I, h⟩ := this
|
||||||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||||
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||||
exact le_trans h this
|
exact le_trans h this
|
||||||
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
|
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
|
||||||
let X := @Polynomial.X K _
|
|
||||||
have : IsPrime (span {X}) := by
|
have : IsPrime (span {X}) := by
|
||||||
refine Iff.mpr (span_singleton_prime ?hp) primeX
|
refine (span_singleton_prime ?hp).mpr primeX
|
||||||
exact Polynomial.X_ne_zero
|
exact Polynomial.X_ne_zero
|
||||||
let P := PrimeSpectrum.mk (span {X}) this
|
let P := PrimeSpectrum.mk (span {X}) this
|
||||||
unfold height
|
unfold height
|
||||||
use P
|
use P
|
||||||
have : ⊥ ∈ {J | J < P} := by
|
have : ⊥ ∈ {J | J < P} := by
|
||||||
simp only [Set.mem_setOf_eq]
|
simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot]
|
||||||
rw [bot_lt_iff_ne_bot]
|
|
||||||
suffices : P.asIdeal ≠ ⊥
|
suffices : P.asIdeal ≠ ⊥
|
||||||
· by_contra x
|
· by_contra x
|
||||||
rw [PrimeSpectrum.ext_iff] at x
|
rw [PrimeSpectrum.ext_iff] at x
|
||||||
|
|
Loading…
Reference in a new issue