mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
Merge branch 'GTBarkley:main' into main
This commit is contained in:
commit
f788d4541b
6 changed files with 604 additions and 75 deletions
|
@ -6,7 +6,6 @@ import Mathlib.RingTheory.Artinian
|
|||
import Mathlib.Order.Height
|
||||
|
||||
|
||||
|
||||
-- Setting for "library_search"
|
||||
set_option maxHeartbeats 0
|
||||
macro "ls" : tactic => `(tactic|library_search)
|
||||
|
@ -44,7 +43,7 @@ noncomputable def length ( A : Type _) (M : Type _)
|
|||
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||||
|
||||
-- Make instance of M_i being an R_0-module
|
||||
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
|
||||
where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
|
||||
|
||||
|
@ -109,8 +108,7 @@ instance {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GComm
|
|||
sorry)
|
||||
|
||||
|
||||
|
||||
class StandardGraded {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where
|
||||
class StandardGraded (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where
|
||||
gen_in_first_piece :
|
||||
Algebra.adjoin (𝒜 0) (DirectSum.of _ 1 : 𝒜 1 →+ ⨁ i, 𝒜 i).range = (⊤ : Subalgebra (𝒜 0) (⨁ i, 𝒜 i))
|
||||
|
||||
|
@ -124,7 +122,25 @@ def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _)
|
|||
|
||||
def graded_morphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) : ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0) ∧ (IsLinearMap (⨁ i, 𝒜 i) f) := by sorry
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
||||
(f : (⨁ i, 𝓜 i) →ₗ[(⨁ i, 𝒜 i)] (⨁ i, 𝓝 i))
|
||||
: ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0)
|
||||
∧ (IsLinearMap (⨁ i, 𝒜 i) f) := by
|
||||
sorry
|
||||
|
||||
#check graded_morphism
|
||||
|
||||
def graded_isomorphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
||||
(f : (⨁ i, 𝓜 i) →ₗ[(⨁ i, 𝒜 i)] (⨁ i, 𝓝 i))
|
||||
: IsLinearEquiv f := by
|
||||
sorry
|
||||
-- f ∈ (⨁ i, 𝓜 i) ≃ₗ[(⨁ i, 𝒜 i)] (⨁ i, 𝓝 i)
|
||||
-- LinearEquivClass f (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) (⨁ i, 𝓝 i)
|
||||
-- #print IsLinearEquiv
|
||||
#check graded_isomorphism
|
||||
|
||||
|
||||
|
||||
def graded_submodule
|
||||
|
@ -143,6 +159,7 @@ end
|
|||
|
||||
|
||||
|
||||
|
||||
-- @Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
|
||||
instance Quotient_of_graded_is_graded
|
||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
|
@ -150,6 +167,13 @@ instance Quotient_of_graded_is_graded
|
|||
: DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||
sorry
|
||||
|
||||
--
|
||||
lemma sss
|
||||
: true := by
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
|
||||
-- If A_0 is Artinian and local, then A is graded local
|
||||
lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||
|
@ -189,10 +213,11 @@ lemma Associated_prime_of_graded_is_graded
|
|||
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
||||
theorem Hilbert_polynomial_d_ge_1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
||||
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||||
|
||||
: PolyType hilb (d - 1) := by
|
||||
sorry
|
||||
|
||||
|
@ -203,7 +228,7 @@ theorem Hilbert_polynomial_d_ge_1_reduced
|
|||
(d : ℕ) (d1 : 1 ≤ d)
|
||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
||||
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||||
|
@ -217,7 +242,7 @@ theorem Hilbert_polynomial_d_ge_1_reduced
|
|||
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
|
||||
theorem Hilbert_polynomial_d_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
||||
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
||||
|
@ -230,7 +255,7 @@ theorem Hilbert_polynomial_d_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [
|
|||
theorem Hilbert_polynomial_d_0_reduced
|
||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
||||
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
||||
|
@ -252,6 +277,12 @@ theorem Hilbert_polynomial_d_0_reduced
|
|||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
285
CommAlg/final_poly_type.lean
Normal file
285
CommAlg/final_poly_type.lean
Normal file
|
@ -0,0 +1,285 @@
|
|||
import Mathlib.Order.Height
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
|
||||
-- Setting for "library_search"
|
||||
set_option maxHeartbeats 0
|
||||
macro "ls" : tactic => `(tactic|library_search)
|
||||
|
||||
-- New tactic "obviously"
|
||||
macro "obviously" : tactic =>
|
||||
`(tactic| (
|
||||
first
|
||||
| dsimp; simp; done; dbg_trace "it was dsimp simp"
|
||||
| simp; done; dbg_trace "it was simp"
|
||||
| tauto; done; dbg_trace "it was tauto"
|
||||
| simp; tauto; done; dbg_trace "it was simp tauto"
|
||||
| rfl; done; dbg_trace "it was rfl"
|
||||
| norm_num; done; dbg_trace "it was norm_num"
|
||||
| /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith"
|
||||
-- | gcongr; done
|
||||
| ring; done; dbg_trace "it was ring"
|
||||
| trivial; done; dbg_trace "it was trivial"
|
||||
-- | nlinarith; done
|
||||
| fail "No, this is not obvious."))
|
||||
|
||||
|
||||
-- Testing of Polynomial
|
||||
section Polynomial
|
||||
noncomputable section
|
||||
#check Polynomial
|
||||
#check Polynomial (ℚ)
|
||||
#check Polynomial.eval
|
||||
|
||||
|
||||
example (f : Polynomial ℚ) (hf : f = Polynomial.C (1 : ℚ)) : Polynomial.eval 2 f = 1 := by
|
||||
have : ∀ (q : ℚ), Polynomial.eval q f = 1 := by
|
||||
sorry
|
||||
obviously
|
||||
|
||||
-- example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : Polynomial.eval 2 f = 4 := by
|
||||
-- sorry
|
||||
|
||||
-- degree of a constant function is ⊥ (is this same as -1 ???)
|
||||
#print Polynomial.degree_zero
|
||||
|
||||
def F : Polynomial ℚ := Polynomial.C (2 : ℚ)
|
||||
#print F
|
||||
#check F
|
||||
#check Polynomial.degree F
|
||||
#check Polynomial.degree 0
|
||||
#check WithBot ℕ
|
||||
-- #eval Polynomial.degree F
|
||||
#check Polynomial.eval 1 F
|
||||
example : Polynomial.eval (100 : ℚ) F = (2 : ℚ) := by
|
||||
refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 F) 2) ?_
|
||||
simp only [Rat.ofNat_num, Rat.ofNat_den]
|
||||
rw [F]
|
||||
simp
|
||||
|
||||
-- Treat polynomial f ∈ ℚ[X] as a function f : ℚ → ℚ
|
||||
#check CoeFun
|
||||
|
||||
|
||||
|
||||
|
||||
end section
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
-- @[BH, 4.1.2]
|
||||
|
||||
|
||||
|
||||
-- All the polynomials are in ℚ[X], all the functions are considered as ℤ → ℤ
|
||||
noncomputable section
|
||||
-- Polynomial type of degree d
|
||||
@[simp]
|
||||
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly) ∧ d = Polynomial.degree Poly
|
||||
section
|
||||
-- structure PolyType (f : ℤ → ℤ) where
|
||||
-- Poly : Polynomial ℤ
|
||||
-- d :
|
||||
-- N : ℤ
|
||||
-- Poly_equal : ∀ n ∈ ℤ → f n = Polynomial.eval n : ℤ Poly
|
||||
|
||||
#check PolyType
|
||||
|
||||
example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by
|
||||
unfold PolyType
|
||||
sorry
|
||||
-- use Polynomial.monomial (2 : ℤ) (1 : ℤ)
|
||||
-- have' := hf 0; ring_nf at this
|
||||
-- exact this
|
||||
|
||||
end section
|
||||
|
||||
-- Δ operator (of d times)
|
||||
@[simp]
|
||||
def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ)
|
||||
| f, 0 => f
|
||||
| f, d + 1 => fun (n : ℤ) ↦ (Δ f d) (n + 1) - (Δ f d) (n)
|
||||
section
|
||||
-- def Δ (f : ℤ → ℤ) (d : ℕ) := fun (n : ℤ) ↦ f (n + 1) - f n
|
||||
-- def add' : ℕ → ℕ → ℕ
|
||||
-- | 0, m => m
|
||||
-- | n+1, m => (add' n m) + 1
|
||||
-- #eval add' 5 10
|
||||
#check Δ
|
||||
def f (n : ℤ) := n
|
||||
#eval (Δ f 1) 100
|
||||
-- #check (by (show_term unfold Δ) : Δ f 0=0)
|
||||
end section
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
-- (NO need to prove another direction) Constant polynomial function = constant function
|
||||
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
||||
(F = Polynomial.C (c : ℚ)) ↔ (∀ r : ℚ, (Polynomial.eval r F) = (c : ℚ)) := by
|
||||
constructor
|
||||
· intro h
|
||||
rintro r
|
||||
refine Iff.mpr (Rat.ext_iff (Polynomial.eval r F) c) ?_
|
||||
simp only [Rat.ofNat_num, Rat.ofNat_den]
|
||||
rw [h]
|
||||
simp
|
||||
· sorry
|
||||
|
||||
|
||||
|
||||
|
||||
-- Shifting doesn't change the polynomial type
|
||||
lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by
|
||||
simp only [PolyType]
|
||||
rcases hf with ⟨F, hh⟩
|
||||
rcases hh with ⟨N,ss⟩
|
||||
sorry
|
||||
|
||||
-- PolyType 0 = constant function
|
||||
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ),
|
||||
(N ≤ n → f n = c)) ∧ c ≠ 0) := by
|
||||
constructor
|
||||
· rintro ⟨Poly, ⟨N, ⟨H1, H2⟩⟩⟩
|
||||
have this1 : Polynomial.degree Poly = 0 := by rw [← H2]; rfl
|
||||
have this2 : ∃ (c : ℤ), Poly = Polynomial.C (c : ℚ) := by
|
||||
have HH : ∃ (c : ℚ), Poly = Polynomial.C (c : ℚ) :=
|
||||
⟨Poly.coeff 0, Polynomial.eq_C_of_degree_eq_zero (by rw[← H2]; rfl)⟩
|
||||
cases' HH with c HHH
|
||||
have HHHH : ∃ (d : ℤ), d = c :=
|
||||
⟨f N, by simp [(Poly_constant Poly c).mp HHH N, H1 N (le_refl N)]⟩
|
||||
cases' HHHH with d H5; exact ⟨d, by rw[← H5] at HHH; exact HHH⟩
|
||||
rcases this2 with ⟨c, hthis2⟩
|
||||
use c; use N; intro n
|
||||
constructor
|
||||
· have this4 : Polynomial.eval (n : ℚ) Poly = c := by
|
||||
rw [hthis2]; simp only [map_intCast, Polynomial.eval_int_cast]
|
||||
exact fun HH1 => Iff.mp (Rat.coe_int_inj (f n) c) (by rw [←this4, H1 n HH1])
|
||||
· intro c0
|
||||
simp only [hthis2, c0, Int.cast_zero, map_zero, Polynomial.degree_zero]
|
||||
at this1
|
||||
· rintro ⟨c, N, hh⟩
|
||||
have H2 : (c : ℚ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero]; exact (hh 0).2
|
||||
exact ⟨Polynomial.C (c : ℚ), N, fun n Nn
|
||||
=> by rw [(hh n).1 Nn]; exact (((Poly_constant (Polynomial.C (c : ℚ))
|
||||
(c : ℚ)).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩
|
||||
|
||||
-- Δ of 0 times preserves the function
|
||||
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by tauto
|
||||
|
||||
-- Δ of 1 times decreaes the polynomial type by one
|
||||
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ): d > 0 → PolyType f d → PolyType (Δ f 1) (d - 1) := by
|
||||
sorry
|
||||
|
||||
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
||||
lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
|
||||
sorry
|
||||
lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ f d) 0):= by
|
||||
induction' d with d hd
|
||||
· intro f h
|
||||
rw [Δ_0]
|
||||
tauto
|
||||
· intro f hf
|
||||
have this1 : PolyType f (d + 1) := by tauto
|
||||
have this2 : PolyType (Δ f (d + 1)) 0 := by
|
||||
have this3 : PolyType (Δ f 1) d := by
|
||||
have this4 : d + 1 > 0 := by positivity
|
||||
have this5 : (d + 1) > 0 → PolyType f (d + 1) → PolyType (Δ f 1) d := Δ_1 f (d + 1)
|
||||
exact this5 this4 this1
|
||||
clear hf
|
||||
specialize hd (Δ f 1)
|
||||
have this4 : PolyType (Δ (Δ f 1) d) 0 := by tauto
|
||||
rw [Δ_1_s_equiv_Δ_s_1] at this4
|
||||
tauto
|
||||
tauto
|
||||
|
||||
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := fun h => (foofoo d f) h
|
||||
|
||||
lemma foofoofoo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
||||
induction' d with d hd
|
||||
|
||||
-- Base case
|
||||
· intro f
|
||||
intro h
|
||||
rcases h with ⟨c, N, hh⟩
|
||||
rw [PolyType_0]
|
||||
use c
|
||||
use N
|
||||
tauto
|
||||
|
||||
-- Induction step
|
||||
· intro f
|
||||
intro h
|
||||
rcases h with ⟨c, N, h⟩
|
||||
have this : PolyType f (d + 1) := by
|
||||
sorry
|
||||
tauto
|
||||
|
||||
|
||||
|
||||
-- [BH, 4.1.2] (a) => (b)
|
||||
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
||||
lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := by
|
||||
sorry
|
||||
-- intro h
|
||||
-- rcases h with ⟨c, N, hh⟩
|
||||
-- have H1 := λ n => (hh n).left
|
||||
-- have H2 := λ n => (hh n).right
|
||||
-- clear hh
|
||||
-- have H2 : c ≠ 0 := by
|
||||
-- tauto
|
||||
-- induction' d with d hd
|
||||
|
||||
-- -- Base case
|
||||
-- · rw [PolyType_0]
|
||||
-- use c
|
||||
-- use N
|
||||
-- tauto
|
||||
|
||||
-- -- Induction step
|
||||
-- · sorry
|
||||
|
||||
-- [BH, 4.1.2] (a) <= (b)
|
||||
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
||||
lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) := by
|
||||
intro h
|
||||
have : PolyType (Δ f d) 0 := by
|
||||
apply Δ_d_PolyType_d_to_PolyType_0
|
||||
exact h
|
||||
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), (N ≤ n → (Δ f d) n = c)) ∧ c ≠ 0) := by
|
||||
rw [←PolyType_0]
|
||||
exact this
|
||||
exact this1
|
||||
end
|
||||
|
||||
-- @Additive lemma of length for a SES
|
||||
-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0
|
||||
section
|
||||
open LinearMap
|
||||
|
||||
-- Definitiion of the length of a module
|
||||
noncomputable def length (R M : Type _) [CommRing R] [AddCommGroup M] [Module R M] := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||||
#check length ℤ ℤ
|
||||
|
||||
-- Definition of a SES (Short Exact Sequence)
|
||||
-- @[ext]
|
||||
structure SES {R A B C : Type _} [CommRing R] [AddCommGroup A] [AddCommGroup B]
|
||||
[AddCommGroup C] [Module R A] [Module R B] [Module R C]
|
||||
(f : A →ₗ[R] B) (g : B →ₗ[R] C)
|
||||
where
|
||||
left_exact : LinearMap.ker f = ⊥
|
||||
middle_exact : LinearMap.range f = LinearMap.ker g
|
||||
right_exact : LinearMap.range g = ⊤
|
||||
|
||||
-- Additive lemma
|
||||
lemma length_Additive (R A B C : Type _) [CommRing R] [AddCommGroup A] [AddCommGroup B] [AddCommGroup C] [Module R A] [Module R B] [Module R C]
|
||||
(f : A →ₗ[R] B) (g : B →ₗ[R] C)
|
||||
: (SES f g) → ((length R A) + (length R C) = (length R B)) := by
|
||||
intro h
|
||||
rcases h with ⟨left_exact, middle_exact, right_exact⟩
|
||||
sorry
|
||||
|
||||
end section
|
|
@ -54,9 +54,20 @@ def symbolicIdeal(Q : Ideal R) {hin : Q.IsPrime} (I : Ideal R) : Ideal R where
|
|||
rw [←mul_assoc, mul_comm s, mul_assoc]
|
||||
exact Ideal.mul_mem_left _ _ hs2
|
||||
|
||||
|
||||
theorem WF_interval_le_prime (I : Ideal R) (P : Ideal R) [P.IsPrime]
|
||||
(h : ∀ J ∈ (Set.Icc I P), J.IsPrime → J = P ):
|
||||
WellFounded ((· < ·) : (Set.Icc I P) → (Set.Icc I P) → Prop ) := sorry
|
||||
|
||||
protected lemma LocalRing.height_le_one_of_minimal_over_principle
|
||||
[LocalRing R] (q : PrimeSpectrum R) {x : R}
|
||||
[LocalRing R] {x : R}
|
||||
(h : (closedPoint R).asIdeal ∈ (Ideal.span {x}).minimalPrimes) :
|
||||
q = closedPoint R ∨ Ideal.height q = 0 := by
|
||||
|
||||
Ideal.height (closedPoint R) ≤ 1 := by
|
||||
-- by_contra hcont
|
||||
-- push_neg at hcont
|
||||
-- rw [Ideal.lt_height_iff'] at hcont
|
||||
-- rcases hcont with ⟨c, hc1, hc2, hc3⟩
|
||||
apply height_le_of_gt_height_lt
|
||||
intro p hp
|
||||
|
||||
sorry
|
|
@ -16,6 +16,7 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|||
import Mathlib.Algebra.Ring.Pi
|
||||
import Mathlib.RingTheory.Finiteness
|
||||
import Mathlib.Util.PiNotation
|
||||
import CommAlg.krull
|
||||
|
||||
open PiNotation
|
||||
|
||||
|
@ -23,10 +24,10 @@ namespace Ideal
|
|||
|
||||
variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
|
||||
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < P}
|
||||
-- noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < P}
|
||||
|
||||
noncomputable def krullDim (R : Type) [CommRing R] :
|
||||
WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
||||
-- noncomputable def krullDim (R : Type) [CommRing R] :
|
||||
-- WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
||||
|
||||
--variable {R}
|
||||
|
||||
|
@ -42,7 +43,6 @@ class IsLocallyNilpotent {R : Type _} [CommRing R] (I : Ideal R) : Prop :=
|
|||
#check Ideal.IsLocallyNilpotent
|
||||
end Ideal
|
||||
|
||||
|
||||
-- Repeats the definition of the length of a module by Monalisa
|
||||
variable (R : Type _) [CommRing R] (I J : Ideal R)
|
||||
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||||
|
@ -66,9 +66,11 @@ lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
|
|||
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by
|
||||
constructor
|
||||
intro RisNoetherian
|
||||
sorry
|
||||
sorry
|
||||
-- how do I apply an instance to prove one direction?
|
||||
|
||||
|
||||
-- Stacks Lemma 5.9.2:
|
||||
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
||||
-- Every closed subset of a noetherian space is a finite union
|
||||
-- of irreducible closed subsets.
|
||||
|
@ -99,9 +101,9 @@ lemma containment_radical_power_containment :
|
|||
|
||||
-- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is
|
||||
-- the same as the dimension as a vector space over R/I,
|
||||
lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I]
|
||||
: I • (⊤ : Submodule R M) = 0
|
||||
→ Module.length R M = Module.rank R⧸I M⧸(I • (⊤ : Submodule R M)) := by sorry
|
||||
-- lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I]
|
||||
-- : I • (⊤ : Submodule R M) = 0
|
||||
-- → Module.length R M = Module.rank R⧸I M⧸(I • (⊤ : Submodule R M)) := by sorry
|
||||
|
||||
-- Does lean know that M/IM is a R/I module?
|
||||
-- Use 10.52.5
|
||||
|
@ -125,30 +127,34 @@ lemma Artinian_has_finite_max_ideal
|
|||
let m' : ℕ ↪ MaximalSpectrum R := Infinite.natEmbedding (MaximalSpectrum R)
|
||||
have m'inj := m'.injective
|
||||
let m'' : ℕ → Ideal R := fun n : ℕ ↦ ⨅ k ∈ range n, (m' k).asIdeal
|
||||
let f : ℕ → Ideal R := fun n : ℕ ↦ (m' n).asIdeal
|
||||
let F : Fin n → Ideal R := fun k ↦ (m' k).asIdeal
|
||||
have comaximal : ∀ i j : ℕ, i ≠ j → (m' i).asIdeal ⊔ (m' j).asIdeal =
|
||||
(⊤ : Ideal R) := by
|
||||
intro i j distinct
|
||||
apply Ideal.IsMaximal.coprime_of_ne
|
||||
exact (m' i).IsMaximal
|
||||
exact (m' j).IsMaximal
|
||||
have : (m' i) ≠ (m' j) := by
|
||||
exact Function.Injective.ne m'inj distinct
|
||||
intro h
|
||||
apply this
|
||||
exact MaximalSpectrum.ext _ _ h
|
||||
have ∀ n : ℕ, (R ⧸ ⨅ (i : Fin n), (F n) i) ≃+* ((i : Fin n) → R ⧸ (F n) i) := by
|
||||
-- let f : ℕ → MaximalSpectrum R := fun n : ℕ ↦ m' n
|
||||
-- let F : (n : ℕ) → Fin n → MaximalSpectrum R := fun n k ↦ m' k
|
||||
have DCC : ∃ n : ℕ, ∀ k : ℕ, n ≤ k → m'' n = m'' k := by
|
||||
apply IsArtinian.monotone_stabilizes {
|
||||
toFun := m''
|
||||
monotone' := sorry
|
||||
}
|
||||
cases' DCC with n DCCn
|
||||
specialize DCCn (n+1)
|
||||
specialize DCCn (Nat.le_succ n)
|
||||
have containment1 : m'' n < (m' (n + 1)).asIdeal := by sorry
|
||||
have : ∀ (j : ℕ), (j ≠ n + 1) → ∃ x, x ∈ (m' j).asIdeal ∧ x ∉ (m' (n+1)).asIdeal := by
|
||||
intro j jnotn
|
||||
have notcontain : ¬ (m' j).asIdeal ≤ (m' (n+1)).asIdeal := by
|
||||
-- apply Ideal.IsMaximal (m' j).asIdeal
|
||||
sorry
|
||||
sorry
|
||||
-- (let F : Fin n → Ideal R := fun k : Fin n ↦ (m' k).asIdeal)
|
||||
-- let g := Ideal.quotientInfRingEquivPiQuotient f comaximal
|
||||
|
||||
sorry
|
||||
-- have distinct : (m' j).asIdeal ≠ (m' (n+1)).asIdeal := by
|
||||
-- intro h
|
||||
-- apply Function.Injective.ne m'inj jnotn
|
||||
-- exact MaximalSpectrum.ext _ _ h
|
||||
-- simp
|
||||
-- unfold
|
||||
|
||||
|
||||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||||
lemma Jacobson_of_Artinian_is_nilpotent
|
||||
[IsArtinianRing R] : IsNilpotent (Ideal.jacobson (⊥ : Ideal R)) := by
|
||||
have J := Ideal.jacobson (⊥ : Ideal R)
|
||||
|
||||
-- This is in mathlib: IsArtinianRing.isNilpotent_jacobson_bot
|
||||
|
||||
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
||||
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
||||
|
@ -162,7 +168,7 @@ abbrev Prod_of_localization :=
|
|||
|
||||
def foo : Prod_of_localization R →+* R where
|
||||
toFun := sorry
|
||||
invFun := sorry
|
||||
-- invFun := sorry
|
||||
left_inv := sorry
|
||||
right_inv := sorry
|
||||
map_mul' := sorry
|
||||
|
@ -187,23 +193,27 @@ lemma primes_of_Artinian_are_maximal
|
|||
|
||||
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
|
||||
|
||||
|
||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ Ideal.krullDim R = 0 ↔ IsArtinianRing R := by
|
||||
lemma dim_le_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 ↔ IsArtinianRing R := by
|
||||
constructor
|
||||
rintro ⟨RisNoetherian, dimzero⟩
|
||||
rw [ring_Noetherian_iff_spec_Noetherian] at RisNoetherian
|
||||
let Z := irreducibleComponents (PrimeSpectrum R)
|
||||
have Zfinite : Set.Finite Z := by
|
||||
-- apply TopologicalSpace.NoetherianSpace.finite_irreducibleComponents ?_
|
||||
sorry
|
||||
|
||||
sorry
|
||||
intro RisArtinian
|
||||
constructor
|
||||
apply finite_length_is_Noetherian
|
||||
rwa [IsArtinian_iff_finite_length] at RisArtinian
|
||||
sorry -- can use Grant's lemma dim_eq_zero_iff
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
rw [Ideal.dim_le_zero_iff]
|
||||
intro I
|
||||
apply primes_of_Artinian_are_maximal
|
||||
|
||||
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -125,8 +125,32 @@ lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
|||
have : height I ≤ krullDim R := by apply height_le_krullDim
|
||||
exact le_trans h this
|
||||
|
||||
lemma le_krullDim_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
|
||||
#check ENat.recTopCoe
|
||||
|
||||
/- terrible place for this lemma. Also this probably exists somewhere
|
||||
Also this is a terrible proof
|
||||
-/
|
||||
lemma eq_top_iff (n : WithBot ℕ∞) : n = ⊤ ↔ ∀ m : ℕ, m ≤ n := by
|
||||
aesop
|
||||
induction' n using WithBot.recBotCoe with n
|
||||
. exfalso
|
||||
have := (a 0)
|
||||
simp [not_lt_of_ge] at this
|
||||
induction' n using ENat.recTopCoe with n
|
||||
. rfl
|
||||
. have := a (n + 1)
|
||||
exfalso
|
||||
change (((n + 1) : ℕ∞) : WithBot ℕ∞) ≤ _ at this
|
||||
simp [WithBot.coe_le_coe] at this
|
||||
change ((n + 1) : ℕ∞) ≤ (n : ℕ∞) at this
|
||||
simp [ENat.add_one_le_iff] at this
|
||||
|
||||
lemma krullDim_eq_top_iff (R : Type _) [CommRing R] :
|
||||
krullDim R = ⊤ ↔ ∀ (n : ℕ), ∃ I : PrimeSpectrum R, n ≤ height I := by
|
||||
simp [eq_top_iff, le_krullDim_iff]
|
||||
change (∀ (m : ℕ), ∃ I, ((m : ℕ∞) : WithBot ℕ∞) ≤ height I) ↔ _
|
||||
simp [WithBot.coe_le_coe]
|
||||
|
||||
|
||||
/-- The Krull dimension of a local ring is the height of its maximal ideal. -/
|
||||
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
|
||||
|
@ -142,31 +166,32 @@ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) :=
|
|||
/-- The height of a prime `𝔭` is greater than `n` if and only if there is a chain of primes less than `𝔭`
|
||||
with length `n + 1`. -/
|
||||
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
rcases n with _ | n
|
||||
. constructor <;> intro h <;> exfalso
|
||||
n < height 𝔭 ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
match n with
|
||||
| ⊤ =>
|
||||
constructor <;> intro h <;> exfalso
|
||||
. exact (not_le.mpr h) le_top
|
||||
. tauto
|
||||
have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by
|
||||
symm
|
||||
show (n + 1 ≤ m ↔ _ )
|
||||
apply ENat.add_one_le_iff
|
||||
exact ENat.coe_ne_top _
|
||||
rw [this]
|
||||
unfold Ideal.height
|
||||
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
||||
rw [{J | J < 𝔭}.le_chainHeight_iff]
|
||||
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
||||
constructor <;> rintro ⟨c, hc⟩ <;> use c
|
||||
. tauto
|
||||
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
|
||||
norm_cast at hc
|
||||
tauto
|
||||
| (n : ℕ) =>
|
||||
have (m : ℕ∞) : n < m ↔ (n + 1 : ℕ∞) ≤ m := by
|
||||
symm
|
||||
show (n + 1 ≤ m ↔ _ )
|
||||
apply ENat.add_one_le_iff
|
||||
exact ENat.coe_ne_top _
|
||||
rw [this]
|
||||
unfold Ideal.height
|
||||
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
||||
rw [{J | J < 𝔭}.le_chainHeight_iff]
|
||||
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
||||
constructor <;> rintro ⟨c, hc⟩ <;> use c
|
||||
. tauto
|
||||
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
|
||||
norm_cast at hc
|
||||
tauto
|
||||
|
||||
/-- Form of `lt_height_iff''` for rewriting with the height coerced to `WithBot ℕ∞`. -/
|
||||
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
show (_ < _) ↔ _
|
||||
(n : WithBot ℕ∞) < height 𝔭 ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
rw [WithBot.coe_lt_coe]
|
||||
exact lt_height_iff'
|
||||
|
||||
|
@ -228,7 +253,7 @@ lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal
|
|||
rw [hcontr] at h
|
||||
exact h h𝔪.1
|
||||
use 𝔪p
|
||||
show (_ : WithBot ℕ∞) > (0 : ℕ∞)
|
||||
show (0 : ℕ∞) < (_ : WithBot ℕ∞)
|
||||
rw [lt_height_iff'']
|
||||
use [I]
|
||||
constructor
|
||||
|
@ -239,7 +264,7 @@ lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal
|
|||
rwa [hI']
|
||||
. simp only [List.length_singleton, Nat.cast_one, zero_add]
|
||||
. contrapose! h
|
||||
change (_ : WithBot ℕ∞) > (0 : ℕ∞) at h
|
||||
change (0 : ℕ∞) < (_ : WithBot ℕ∞) at h
|
||||
rw [lt_height_iff''] at h
|
||||
obtain ⟨c, _, hc2, hc3⟩ := h
|
||||
norm_cast at hc3
|
||||
|
|
167
CommAlg/polynomial.lean
Normal file
167
CommAlg/polynomial.lean
Normal file
|
@ -0,0 +1,167 @@
|
|||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.RingTheory.FiniteType
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.Polynomial.Quotient
|
||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
import CommAlg.krull
|
||||
|
||||
section ChainLemma
|
||||
variable {α β : Type _}
|
||||
variable [LT α] [LT β] (s t : Set α)
|
||||
|
||||
namespace Set
|
||||
open List
|
||||
|
||||
/-
|
||||
Sorry for using aesop, but it doesn't take that long
|
||||
-/
|
||||
theorem append_mem_subchain_iff :
|
||||
l ++ l' ∈ s.subchain ↔ l ∈ s.subchain ∧ l' ∈ s.subchain ∧ ∀ a ∈ l.getLast?, ∀ b ∈ l'.head?, a < b := by
|
||||
simp [subchain, chain'_append]
|
||||
aesop
|
||||
|
||||
end Set
|
||||
end ChainLemma
|
||||
|
||||
variable {R : Type _} [CommRing R]
|
||||
open Ideal Polynomial
|
||||
|
||||
namespace Polynomial
|
||||
/-
|
||||
The composition R → R[X] → R is the identity
|
||||
-/
|
||||
theorem coeff_C_eq : RingHom.comp constantCoeff C = RingHom.id R := by ext; simp
|
||||
|
||||
end Polynomial
|
||||
|
||||
/-
|
||||
Given an ideal I in R, we define the ideal adjoin_x' I to be the kernel
|
||||
of R[X] → R → R/I
|
||||
-/
|
||||
def adj_x_map (I : Ideal R) : R[X] →+* R ⧸ I := (Ideal.Quotient.mk I).comp constantCoeff
|
||||
def adjoin_x' (I : Ideal R) : Ideal (Polynomial R) := RingHom.ker (adj_x_map I)
|
||||
def adjoin_x (I : PrimeSpectrum R) : PrimeSpectrum (Polynomial R) where
|
||||
asIdeal := adjoin_x' I.asIdeal
|
||||
IsPrime := RingHom.ker_isPrime _
|
||||
|
||||
@[simp]
|
||||
lemma adj_x_comp_C (I : Ideal R) : RingHom.comp (adj_x_map I) C = Ideal.Quotient.mk I := by
|
||||
ext x; simp [adj_x_map]
|
||||
|
||||
lemma adjoin_x_eq (I : Ideal R) : adjoin_x' I = I.map C ⊔ Ideal.span {X} := by
|
||||
apply le_antisymm
|
||||
. rintro p hp
|
||||
have h : ∃ q r, p = C r + X * q := ⟨p.divX, p.coeff 0, p.divX_mul_X_add.symm.trans $ by ring⟩
|
||||
obtain ⟨q, r, rfl⟩ := h
|
||||
suffices : r ∈ I
|
||||
. simp only [Submodule.mem_sup, Ideal.mem_span_singleton]
|
||||
refine' ⟨C r, Ideal.mem_map_of_mem C this, X * q, ⟨q, rfl⟩, rfl⟩
|
||||
rw [adjoin_x', adj_x_map, RingHom.mem_ker, RingHom.comp_apply] at hp
|
||||
rw [constantCoeff_apply, coeff_add, coeff_C_zero, coeff_X_mul_zero, add_zero] at hp
|
||||
rwa [←RingHom.mem_ker, Ideal.mk_ker] at hp
|
||||
. rw [sup_le_iff]
|
||||
constructor
|
||||
. simp [adjoin_x', RingHom.ker, ←map_le_iff_le_comap, Ideal.map_map]
|
||||
. simp [span_le, adjoin_x', RingHom.mem_ker, adj_x_map]
|
||||
|
||||
/-
|
||||
If I is prime in R, the pushforward I*R[X] is prime in R[X]
|
||||
-/
|
||||
def map_prime (I : PrimeSpectrum R) : PrimeSpectrum R[X] :=
|
||||
⟨I.asIdeal.map C, isPrime_map_C_of_isPrime I.IsPrime⟩
|
||||
|
||||
/-
|
||||
The pushforward map (Ideal R) → (Ideal R[X]) is injective
|
||||
-/
|
||||
lemma map_inj {I J : Ideal R} (h : I.map C = J.map C) : I = J := by
|
||||
have H : map constantCoeff (I.map C) = map constantCoeff (J.map C) := by rw [h]
|
||||
simp [Ideal.map_map, coeff_C_eq] at H
|
||||
exact H
|
||||
|
||||
/-
|
||||
The pushforward map (Ideal R) → (Ideal R[X]) is strictly monotone
|
||||
-/
|
||||
lemma map_strictmono {I J : Ideal R} (h : I < J) : I.map C < J.map C := by
|
||||
rw [lt_iff_le_and_ne] at h ⊢
|
||||
exact ⟨map_mono h.1, fun H => h.2 (map_inj H)⟩
|
||||
|
||||
lemma map_lt_adjoin_x (I : PrimeSpectrum R) : map_prime I < adjoin_x I := by
|
||||
simp [adjoin_x, adjoin_x_eq]
|
||||
show I.asIdeal.map C < I.asIdeal.map C ⊔ span {X}
|
||||
simp [Ideal.span_le, mem_map_C_iff]
|
||||
use 1
|
||||
simp
|
||||
rw [←Ideal.eq_top_iff_one]
|
||||
exact I.IsPrime.ne_top'
|
||||
|
||||
lemma ht_adjoin_x_eq_ht_add_one [Nontrivial R] (I : PrimeSpectrum R) : height I + 1 ≤ height (adjoin_x I) := by
|
||||
suffices H : height I + (1 : ℕ) ≤ height (adjoin_x I) + (0 : ℕ)
|
||||
. norm_cast at H; rw [add_zero] at H; exact H
|
||||
rw [height, height, Set.chainHeight_add_le_chainHeight_add {J | J < I} _ 1 0]
|
||||
intro l hl
|
||||
use ((l.map map_prime) ++ [map_prime I])
|
||||
refine' ⟨_, by simp⟩
|
||||
. simp [Set.append_mem_subchain_iff]
|
||||
refine' ⟨_, map_lt_adjoin_x I, fun a ha => _⟩
|
||||
. refine' ⟨_, fun i hi => _⟩
|
||||
. apply List.chain'_map_of_chain' map_prime (fun a b hab => map_strictmono hab) hl.1
|
||||
. rw [List.mem_map] at hi
|
||||
obtain ⟨a, ha, rfl⟩ := hi
|
||||
calc map_prime a < map_prime I := by apply map_strictmono; apply hl.2; apply ha
|
||||
_ < adjoin_x I := by apply map_lt_adjoin_x
|
||||
. have H : ∃ b : PrimeSpectrum R, b ∈ l ∧ map_prime b = a
|
||||
. have H2 : l ≠ []
|
||||
. intro h
|
||||
rw [h] at ha
|
||||
tauto
|
||||
use l.getLast H2
|
||||
refine' ⟨List.getLast_mem H2, _⟩
|
||||
have H3 : l.map map_prime ≠ []
|
||||
. intro hl
|
||||
apply H2
|
||||
apply List.eq_nil_of_map_eq_nil hl
|
||||
rw [List.getLast?_eq_getLast _ H3, Option.some_inj] at ha
|
||||
simp [←ha, List.getLast_map _ H2]
|
||||
obtain ⟨b, hb, rfl⟩ := H
|
||||
apply map_strictmono
|
||||
apply hl.2
|
||||
exact hb
|
||||
|
||||
#check (⊤ : ℕ∞)
|
||||
/-
|
||||
dim R + 1 ≤ dim R[X]
|
||||
-/
|
||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||
krullDim R + (1 : ℕ∞) ≤ krullDim R[X] := by
|
||||
obtain ⟨n, hn⟩ := krullDim_nonneg_of_nontrivial R
|
||||
rw [hn]
|
||||
change ↑(n + 1) ≤ krullDim R[X]
|
||||
have := le_of_eq hn.symm
|
||||
induction' n using ENat.recTopCoe with n
|
||||
. change krullDim R = ⊤ at hn
|
||||
change ⊤ ≤ krullDim R[X]
|
||||
rw [krullDim_eq_top_iff] at hn
|
||||
rw [top_le_iff, krullDim_eq_top_iff]
|
||||
intro n
|
||||
obtain ⟨I, hI⟩ := hn n
|
||||
use adjoin_x I
|
||||
calc n ≤ height I := hI
|
||||
_ ≤ height I + 1 := le_self_add
|
||||
_ ≤ height (adjoin_x I) := ht_adjoin_x_eq_ht_add_one I
|
||||
change n ≤ krullDim R at this
|
||||
change (n + 1 : ℕ) ≤ krullDim R[X]
|
||||
rw [le_krullDim_iff] at this ⊢
|
||||
obtain ⟨I, hI⟩ := this
|
||||
use adjoin_x I
|
||||
apply WithBot.coe_mono
|
||||
calc n + 1 ≤ height I + 1 := by
|
||||
apply add_le_add_right
|
||||
change ((n : ℕ∞) : WithBot ℕ∞) ≤ (height I) at hI
|
||||
rw [WithBot.coe_le_coe] at hI
|
||||
exact hI
|
||||
_ ≤ height (adjoin_x I) := ht_adjoin_x_eq_ht_add_one I
|
Loading…
Reference in a new issue