mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
06/16 version
This commit is contained in:
parent
ed83762764
commit
b3332d77d7
1 changed files with 81 additions and 36 deletions
|
@ -44,24 +44,27 @@ example (f : Polynomial ℚ) (hf : f = Polynomial.C (1 : ℚ)) : Polynomial.eval
|
||||||
-- degree of a constant function is ⊥ (is this same as -1 ???)
|
-- degree of a constant function is ⊥ (is this same as -1 ???)
|
||||||
#print Polynomial.degree_zero
|
#print Polynomial.degree_zero
|
||||||
|
|
||||||
def F : Polynomial ℚ := Polynomial.C (2 : ℚ)
|
def FF : Polynomial ℚ := Polynomial.C (2 : ℚ)
|
||||||
#print F
|
#print FF
|
||||||
#check F
|
#check FF
|
||||||
#check Polynomial.degree F
|
#check Polynomial.degree FF
|
||||||
#check Polynomial.degree 0
|
#check Polynomial.degree 0
|
||||||
#check WithBot ℕ
|
#check WithBot ℕ
|
||||||
-- #eval Polynomial.degree F
|
-- #eval Polynomial.degree FF
|
||||||
#check Polynomial.eval 1 F
|
#check Polynomial.eval 1 FF
|
||||||
example : Polynomial.eval (100 : ℚ) F = (2 : ℚ) := by
|
example : Polynomial.eval (100 : ℚ) FF = (2 : ℚ) := by
|
||||||
refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 F) 2) ?_
|
refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 FF) 2) ?_
|
||||||
simp only [Rat.ofNat_num, Rat.ofNat_den]
|
simp only [Rat.ofNat_num, Rat.ofNat_den]
|
||||||
rw [F]
|
rw [FF]
|
||||||
simp
|
simp
|
||||||
|
sorry
|
||||||
-- Treat polynomial f ∈ ℚ[X] as a function f : ℚ → ℚ
|
-- Treat polynomial f ∈ ℚ[X] as a function f : ℚ → ℚ
|
||||||
#check CoeFun
|
#check CoeFun
|
||||||
|
|
||||||
|
#check Polynomial.eval₂
|
||||||
|
#check Polynomial.comp
|
||||||
|
#check Polynomial.eval₂.comp
|
||||||
|
#check Polynomial.card_roots
|
||||||
|
|
||||||
|
|
||||||
end section
|
end section
|
||||||
|
@ -106,8 +109,8 @@ section
|
||||||
-- | n+1, m => (add' n m) + 1
|
-- | n+1, m => (add' n m) + 1
|
||||||
-- #eval add' 5 10
|
-- #eval add' 5 10
|
||||||
#check Δ
|
#check Δ
|
||||||
def f (n : ℤ) := n
|
def fff (n : ℤ) := n
|
||||||
#eval (Δ f 1) 100
|
#eval (Δ fff 1) 100
|
||||||
-- #check (by (show_term unfold Δ) : Δ f 0=0)
|
-- #check (by (show_term unfold Δ) : Δ f 0=0)
|
||||||
end section
|
end section
|
||||||
|
|
||||||
|
@ -125,12 +128,30 @@ lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
||||||
simp
|
simp
|
||||||
· sorry
|
· sorry
|
||||||
|
|
||||||
|
-- Get the polynomial G (X) = F (X + s) from the polynomial F(X)
|
||||||
|
lemma Polynomial_shifting (F : Polynomial ℚ) (s : ℚ) : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
-- Shifting doesn't change the polynomial type
|
-- Shifting doesn't change the polynomial type
|
||||||
lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by
|
lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by
|
||||||
simp only [PolyType]
|
simp only [PolyType]
|
||||||
rcases hf with ⟨F, hh⟩
|
rcases hf with ⟨F, hh⟩
|
||||||
rcases hh with ⟨N,ss⟩
|
rcases hh with ⟨N,s1, s2⟩
|
||||||
sorry
|
have this : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
|
||||||
|
exact Polynomial_shifting F s
|
||||||
|
rcases this with ⟨Poly, h1, h2⟩
|
||||||
|
use Poly
|
||||||
|
use N
|
||||||
|
constructor
|
||||||
|
· intro n
|
||||||
|
specialize s1 (n + s)
|
||||||
|
intro hN
|
||||||
|
have this1 : f (n + s) = Polynomial.eval (n + s : ℚ) F := by
|
||||||
|
sorry
|
||||||
|
sorry
|
||||||
|
· rw [h2, s2]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- PolyType 0 = constant function
|
-- PolyType 0 = constant function
|
||||||
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ),
|
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ),
|
||||||
|
@ -146,18 +167,18 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
||||||
⟨f N, by simp [(Poly_constant Poly c).mp HHH N, H1 N (le_refl N)]⟩
|
⟨f N, by simp [(Poly_constant Poly c).mp HHH N, H1 N (le_refl N)]⟩
|
||||||
cases' HHHH with d H5; exact ⟨d, by rw[← H5] at HHH; exact HHH⟩
|
cases' HHHH with d H5; exact ⟨d, by rw[← H5] at HHH; exact HHH⟩
|
||||||
rcases this2 with ⟨c, hthis2⟩
|
rcases this2 with ⟨c, hthis2⟩
|
||||||
use c; use N; intro n
|
use c; use N; constructor
|
||||||
constructor
|
· intro n
|
||||||
· have this4 : Polynomial.eval (n : ℚ) Poly = c := by
|
have this4 : Polynomial.eval (n : ℚ) Poly = c := by
|
||||||
rw [hthis2]; simp only [map_intCast, Polynomial.eval_int_cast]
|
rw [hthis2]; simp only [map_intCast, Polynomial.eval_int_cast]
|
||||||
exact fun HH1 => Iff.mp (Rat.coe_int_inj (f n) c) (by rw [←this4, H1 n HH1])
|
exact fun HH1 => Iff.mp (Rat.coe_int_inj (f n) c) (by rw [←this4, H1 n HH1])
|
||||||
· intro c0
|
· intro c0
|
||||||
simp only [hthis2, c0, Int.cast_zero, map_zero, Polynomial.degree_zero]
|
simp only [hthis2, c0, Int.cast_zero, map_zero, Polynomial.degree_zero]
|
||||||
at this1
|
at this1
|
||||||
· rintro ⟨c, N, hh⟩
|
· rintro ⟨c, N, hh⟩
|
||||||
have H2 : (c : ℚ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero]; exact (hh 0).2
|
have H2 : (c : ℚ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero, hh]
|
||||||
exact ⟨Polynomial.C (c : ℚ), N, fun n Nn
|
exact ⟨Polynomial.C (c : ℚ), N, fun n Nn
|
||||||
=> by rw [(hh n).1 Nn]; exact (((Poly_constant (Polynomial.C (c : ℚ))
|
=> by rw [hh.1 n Nn]; exact (((Poly_constant (Polynomial.C (c : ℚ))
|
||||||
(c : ℚ)).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩
|
(c : ℚ)).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩
|
||||||
|
|
||||||
-- Δ of 0 times preserves the function
|
-- Δ of 0 times preserves the function
|
||||||
|
@ -167,13 +188,46 @@ lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by tauto
|
||||||
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by
|
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by
|
||||||
intro h
|
intro h
|
||||||
simp only [PolyType, Δ, Int.cast_sub, exists_and_right]
|
simp only [PolyType, Δ, Int.cast_sub, exists_and_right]
|
||||||
rcases h with ⟨Poly, N, h⟩
|
rcases h with ⟨F, N, h⟩
|
||||||
sorry
|
rcases h with ⟨h1, h2⟩
|
||||||
|
have this : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + 1) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
|
||||||
|
exact Polynomial_shifting F 1
|
||||||
|
rcases this with ⟨G, hG, hGG⟩
|
||||||
|
let Poly := G - F
|
||||||
|
use Poly
|
||||||
|
constructor
|
||||||
|
· use N
|
||||||
|
intro n hn
|
||||||
|
specialize hG n
|
||||||
|
norm_num
|
||||||
|
rw [hG]
|
||||||
|
let h3 := h1
|
||||||
|
specialize h3 n
|
||||||
|
have this1 : f n = Polynomial.eval (n : ℚ) F := by tauto
|
||||||
|
have this2 : f (n + 1) = Polynomial.eval ((n + 1) : ℚ) F := by
|
||||||
|
specialize h1 (n + 1)
|
||||||
|
have this3 : N ≤ n + 1 := by linarith
|
||||||
|
aesop
|
||||||
|
rw [←this1, ←this2]
|
||||||
|
· have this1 : Polynomial.degree Poly = d := by
|
||||||
|
have this2 : Polynomial.degree Poly ≤ d := by
|
||||||
|
sorry
|
||||||
|
have this3 : Polynomial.degree Poly ≥ d := by
|
||||||
|
sorry
|
||||||
|
sorry
|
||||||
|
tauto
|
||||||
|
|
||||||
|
|
||||||
-- The "reverse" of Δ of 1 times increases the polynomial type by one
|
-- The "reverse" of Δ of 1 times increases the polynomial type by one
|
||||||
lemma Δ_1_ (f : ℤ → ℤ) (d : ℕ) : PolyType (Δ f 1) d → PolyType f (d + 1) := by
|
lemma Δ_1_ (f : ℤ → ℤ) (d : ℕ) : PolyType (Δ f 1) d → PolyType f (d + 1) := by
|
||||||
|
intro h
|
||||||
|
simp only [PolyType, Nat.cast_add, Nat.cast_one, exists_and_right]
|
||||||
|
rcases h with ⟨P, N, h⟩
|
||||||
|
rcases h with ⟨h1, h2⟩
|
||||||
|
let G := fun (q : ℤ) => f (N)
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
||||||
lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
|
lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
|
||||||
induction' s with s hs
|
induction' s with s hs
|
||||||
|
@ -183,19 +237,10 @@ lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ
|
||||||
induction' d with d hd
|
induction' d with d hd
|
||||||
· intro f h
|
· intro f h
|
||||||
rw [Δ_0]
|
rw [Δ_0]
|
||||||
tauto
|
exact h
|
||||||
· intro f hf
|
· intro f hf
|
||||||
have this1 : PolyType f (d + 1) := by tauto
|
have this4 := hd (Δ f 1) $ (Δ_1 f d) hf
|
||||||
have this2 : PolyType (Δ f (d + 1)) 0 := by
|
rwa [Δ_1_s_equiv_Δ_s_1] at this4
|
||||||
have this3 : PolyType (Δ f 1) d := by
|
|
||||||
have this5 : PolyType f (d + 1) → PolyType (Δ f 1) d := Δ_1 f d
|
|
||||||
exact this5 this1
|
|
||||||
clear hf
|
|
||||||
specialize hd (Δ f 1)
|
|
||||||
have this4 : PolyType (Δ (Δ f 1) d) 0 := by tauto
|
|
||||||
rw [Δ_1_s_equiv_Δ_s_1] at this4
|
|
||||||
tauto
|
|
||||||
tauto
|
|
||||||
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := fun h => (foofoo d f) h
|
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := fun h => (foofoo d f) h
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue