mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
proved dim_eq_bot_iff
This commit is contained in:
parent
0291df2283
commit
afeeeb506f
1 changed files with 32 additions and 8 deletions
|
@ -52,10 +52,10 @@ open Ideal
|
||||||
-- chain of primes
|
-- chain of primes
|
||||||
#check height
|
#check height
|
||||||
|
|
||||||
-- lemma height_ge_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
lemma lt_height_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||||
-- height 𝔭 ≥ n ↔ := sorry
|
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := sorry
|
||||||
|
|
||||||
lemma height_ge_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||||
rcases n with _ | n
|
rcases n with _ | n
|
||||||
. constructor <;> intro h <;> exfalso
|
. constructor <;> intro h <;> exfalso
|
||||||
|
@ -88,13 +88,37 @@ lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krull
|
||||||
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||||||
use k
|
use k
|
||||||
|
|
||||||
lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
-- lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||||||
Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
|
-- Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
|
||||||
sorry
|
-- sorry
|
||||||
|
|
||||||
lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
-- lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||||||
Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
|
-- Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
|
||||||
|
|
||||||
|
lemma prime_elim_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
||||||
|
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
||||||
|
|
||||||
|
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
||||||
|
constructor
|
||||||
|
. contrapose
|
||||||
|
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
|
||||||
|
apply PrimeSpectrum.instNonemptyPrimeSpectrum
|
||||||
|
. intro h
|
||||||
|
by_contra hneg
|
||||||
|
rw [not_isEmpty_iff] at hneg
|
||||||
|
rcases hneg with ⟨a, ha⟩
|
||||||
|
exact prime_elim_of_subsingleton R ⟨a, ha⟩
|
||||||
|
|
||||||
|
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
||||||
|
unfold Ideal.krullDim
|
||||||
|
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
|
||||||
|
constructor <;> intro h
|
||||||
|
. rw [←not_nonempty_iff]
|
||||||
|
rintro ⟨a, ha⟩
|
||||||
|
specialize h ⟨a, ha⟩
|
||||||
|
tauto
|
||||||
|
. rw [h.forall_iff]
|
||||||
|
trivial
|
||||||
|
|
||||||
|
|
||||||
#check (sorry : False)
|
#check (sorry : False)
|
||||||
|
|
Loading…
Reference in a new issue