diff --git a/CommAlg/grant.lean b/CommAlg/grant.lean index ef2cc9f..7951c54 100644 --- a/CommAlg/grant.lean +++ b/CommAlg/grant.lean @@ -52,10 +52,10 @@ open Ideal -- chain of primes #check height --- lemma height_ge_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} : --- height 𝔭 ≥ n ↔ := sorry +lemma lt_height_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} : + height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := sorry -lemma height_ge_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} : +lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} : height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by rcases n with _ | n . constructor <;> intro h <;> exfalso @@ -88,13 +88,37 @@ lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krull lift (Ideal.krullDim R) to ℕ∞ using h with k use k -lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} : - Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by - sorry +-- lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} : +-- Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by +-- sorry -lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} : - Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry +-- lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} : +-- Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry +lemma prime_elim_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False := + x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem + +lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by + constructor + . contrapose + rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not] + apply PrimeSpectrum.instNonemptyPrimeSpectrum + . intro h + by_contra hneg + rw [not_isEmpty_iff] at hneg + rcases hneg with ⟨a, ha⟩ + exact prime_elim_of_subsingleton R ⟨a, ha⟩ + +lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by + unfold Ideal.krullDim + rw [←primeSpectrum_empty_iff, iSup_eq_bot] + constructor <;> intro h + . rw [←not_nonempty_iff] + rintro ⟨a, ha⟩ + specialize h ⟨a, ha⟩ + tauto + . rw [h.forall_iff] + trivial #check (sorry : False)