mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
change: Refactoring
This commit is contained in:
parent
6496bc43d9
commit
a41873ac1b
1 changed files with 9 additions and 19 deletions
|
@ -9,18 +9,8 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
-- import Mathlib.Data.ENat.Lattice
|
-- import Mathlib.Data.ENat.Lattice
|
||||||
-- import Mathlib.Order.OrderIsoNat
|
-- import Mathlib.Order.OrderIsoNat
|
||||||
-- import Mathlib.Tactic.TFAE
|
-- import Mathlib.Tactic.TFAE
|
||||||
|
|
||||||
namespace Ideal
|
namespace Ideal
|
||||||
|
|
||||||
-- def foo : List Nat := [1, 2, 3, 4, 5]
|
|
||||||
|
|
||||||
-- #check List.Chain'
|
|
||||||
|
|
||||||
-- example : List.Chain' (· < ·) foo := by
|
|
||||||
-- repeat { constructor; norm_num }
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
example (x : Nat) : List.Chain' (· < ·) [x] := by
|
example (x : Nat) : List.Chain' (· < ·) [x] := by
|
||||||
constructor
|
constructor
|
||||||
|
|
||||||
|
@ -36,10 +26,8 @@ lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := r
|
||||||
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||||
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||||
|
|
||||||
variable {K : Type _} [Field K]
|
@[simp]
|
||||||
|
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||||||
lemma dim_field_eq_zero : krullDim K = 0 := by
|
|
||||||
have prime_bot (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
|
||||||
constructor
|
constructor
|
||||||
· intro primeP
|
· intro primeP
|
||||||
obtain T := eq_bot_or_top P
|
obtain T := eq_bot_or_top P
|
||||||
|
@ -48,9 +36,8 @@ lemma dim_field_eq_zero : krullDim K = 0 := by
|
||||||
· intro botP
|
· intro botP
|
||||||
rw [botP]
|
rw [botP]
|
||||||
exact bot_prime
|
exact bot_prime
|
||||||
unfold krullDim
|
|
||||||
have height_zero : ∀ P : PrimeSpectrum K, height P = 0 := by
|
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
||||||
intro P
|
|
||||||
unfold height
|
unfold height
|
||||||
simp
|
simp
|
||||||
by_contra spec
|
by_contra spec
|
||||||
|
@ -59,9 +46,12 @@ lemma dim_field_eq_zero : krullDim K = 0 := by
|
||||||
obtain ⟨J, JlP : J < P⟩ := spec
|
obtain ⟨J, JlP : J < P⟩ := spec
|
||||||
have P0 : IsPrime P.asIdeal := P.IsPrime
|
have P0 : IsPrime P.asIdeal := P.IsPrime
|
||||||
have J0 : IsPrime J.asIdeal := J.IsPrime
|
have J0 : IsPrime J.asIdeal := J.IsPrime
|
||||||
rw [prime_bot] at P0 J0
|
rw [field_prime_bot] at P0 J0
|
||||||
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
||||||
have JeqP : J = P := PrimeSpectrum.ext J P this
|
have JeqP : J = P := PrimeSpectrum.ext J P this
|
||||||
have JneqP : J ≠ P := ne_of_lt JlP
|
have JneqP : J ≠ P := ne_of_lt JlP
|
||||||
contradiction
|
contradiction
|
||||||
simp [height_zero]
|
|
||||||
|
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||||
|
unfold krullDim
|
||||||
|
simp [field_prime_height_zero]
|
||||||
|
|
Loading…
Reference in a new issue