From a41873ac1b52a51eaafa29caf112f8827185ea92 Mon Sep 17 00:00:00 2001 From: SinTan1729 Date: Mon, 12 Jun 2023 16:25:02 -0700 Subject: [PATCH] change: Refactoring --- CommAlg/sayantan.lean | 28 +++++++++------------------- 1 file changed, 9 insertions(+), 19 deletions(-) diff --git a/CommAlg/sayantan.lean b/CommAlg/sayantan.lean index 553fa4f..90bf5d5 100644 --- a/CommAlg/sayantan.lean +++ b/CommAlg/sayantan.lean @@ -9,18 +9,8 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic -- import Mathlib.Data.ENat.Lattice -- import Mathlib.Order.OrderIsoNat -- import Mathlib.Tactic.TFAE - namespace Ideal --- def foo : List Nat := [1, 2, 3, 4, 5] - --- #check List.Chain' - --- example : List.Chain' (· < ·) foo := by --- repeat { constructor; norm_num } - - - example (x : Nat) : List.Chain' (· < ·) [x] := by constructor @@ -36,10 +26,8 @@ lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := r lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl -variable {K : Type _} [Field K] - -lemma dim_field_eq_zero : krullDim K = 0 := by - have prime_bot (P : Ideal K) : IsPrime P ↔ P = ⊥ := by +@[simp] +lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by constructor · intro primeP obtain T := eq_bot_or_top P @@ -48,9 +36,8 @@ lemma dim_field_eq_zero : krullDim K = 0 := by · intro botP rw [botP] exact bot_prime - unfold krullDim - have height_zero : ∀ P : PrimeSpectrum K, height P = 0 := by - intro P + +lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by unfold height simp by_contra spec @@ -59,9 +46,12 @@ lemma dim_field_eq_zero : krullDim K = 0 := by obtain ⟨J, JlP : J < P⟩ := spec have P0 : IsPrime P.asIdeal := P.IsPrime have J0 : IsPrime J.asIdeal := J.IsPrime - rw [prime_bot] at P0 J0 + rw [field_prime_bot] at P0 J0 have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0) have JeqP : J = P := PrimeSpectrum.ext J P this have JneqP : J ≠ P := ne_of_lt JlP contradiction - simp [height_zero] + +lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by + unfold krullDim + simp [field_prime_height_zero]