mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
wrote proofs of 2 lemmas
This commit is contained in:
parent
62906d776c
commit
a3e4746b13
1 changed files with 10 additions and 9 deletions
|
@ -6,7 +6,9 @@ import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|||
import Mathlib.RingTheory.DedekindDomain.DVR
|
||||
|
||||
|
||||
lemma FieldisArtinian (R : Type _) [CommRing R] (IsField : ):= by sorry
|
||||
lemma FieldisArtinian (R : Type _) [CommRing R] (h: IsField R) :
|
||||
IsArtinianRing R := by sorry
|
||||
|
||||
|
||||
|
||||
lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R]
|
||||
|
@ -47,8 +49,7 @@ lemma isArtinianRing_of_quotient_of_artinian (R : Type _) [CommRing R]
|
|||
lemma IsPrimeMaximal (R : Type _) [CommRing R] (P : Ideal R)
|
||||
(IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime P) : Ideal.IsMaximal P :=
|
||||
by
|
||||
-- if R is Artinian and P is prime then R/P is Integral Domain
|
||||
-- which is Artinian Domain
|
||||
-- if R is Artinian and P is prime then R/P is Artinian Domain
|
||||
-- R⧸P is a field by the above lemma
|
||||
-- P is maximal
|
||||
|
||||
|
@ -56,13 +57,13 @@ by
|
|||
have artRP : IsArtinianRing (R⧸P) := by
|
||||
exact isArtinianRing_of_quotient_of_artinian R P IsArt
|
||||
|
||||
|
||||
have artRPField : IsField (R⧸P) := by
|
||||
exact ArtinianDomainIsField (R⧸P) artRP
|
||||
|
||||
have h := Ideal.Quotient.maximal_of_isField P artRPField
|
||||
exact h
|
||||
|
||||
-- Then R/I is Artinian
|
||||
-- have' : IsArtinianRing R ∧ Ideal.IsPrime I → IsDomain (R⧸I) := by
|
||||
|
||||
-- R⧸I.IsArtinian → monotone_stabilizes_iff_artinian.R⧸I
|
||||
|
||||
|
||||
|
||||
|
||||
-- Use Stacks project proof since it's broken into lemmas
|
||||
|
|
Loading…
Reference in a new issue