diff --git a/CommAlg/sameer(artinian-rings).lean b/CommAlg/sameer(artinian-rings).lean index e6bb667..417cc96 100644 --- a/CommAlg/sameer(artinian-rings).lean +++ b/CommAlg/sameer(artinian-rings).lean @@ -6,7 +6,9 @@ import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.RingTheory.DedekindDomain.DVR -lemma FieldisArtinian (R : Type _) [CommRing R] (IsField : ):= by sorry +lemma FieldisArtinian (R : Type _) [CommRing R] (h: IsField R) : + IsArtinianRing R := by sorry + lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R] @@ -47,8 +49,7 @@ lemma isArtinianRing_of_quotient_of_artinian (R : Type _) [CommRing R] lemma IsPrimeMaximal (R : Type _) [CommRing R] (P : Ideal R) (IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime P) : Ideal.IsMaximal P := by --- if R is Artinian and P is prime then R/P is Integral Domain --- which is Artinian Domain +-- if R is Artinian and P is prime then R/P is Artinian Domain -- R⧸P is a field by the above lemma -- P is maximal @@ -56,13 +57,13 @@ by have artRP : IsArtinianRing (R⧸P) := by exact isArtinianRing_of_quotient_of_artinian R P IsArt - + have artRPField : IsField (R⧸P) := by + exact ArtinianDomainIsField (R⧸P) artRP + + have h := Ideal.Quotient.maximal_of_isField P artRPField + exact h + -- Then R/I is Artinian -- have' : IsArtinianRing R ∧ Ideal.IsPrime I → IsDomain (R⧸I) := by -- R⧸I.IsArtinian → monotone_stabilizes_iff_artinian.R⧸I - - - - --- Use Stacks project proof since it's broken into lemmas