mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge branch 'monalisa' of github.com:GTBarkley/comm_alg into monalisa
This commit is contained in:
commit
9e8e2860ca
5 changed files with 353 additions and 81 deletions
|
@ -54,8 +54,6 @@ noncomputable section
|
||||||
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly) ∧ d = Polynomial.degree Poly
|
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly) ∧ d = Polynomial.degree Poly
|
||||||
section
|
section
|
||||||
|
|
||||||
#check PolyType
|
|
||||||
|
|
||||||
example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by
|
example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by
|
||||||
unfold PolyType
|
unfold PolyType
|
||||||
sorry
|
sorry
|
||||||
|
@ -139,8 +137,8 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
||||||
|
|
||||||
-- Δ of 0 times preserves the function
|
-- Δ of 0 times preserves the function
|
||||||
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by rfl
|
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by rfl
|
||||||
--simp only [Δ]
|
|
||||||
-- Δ of 1 times decreaes the polynomial type by one
|
-- Δ of 1 times decreaes the polynomial type by one --can be golfed
|
||||||
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by
|
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by
|
||||||
intro h
|
intro h
|
||||||
simp only [PolyType, Δ, Int.cast_sub, exists_and_right]
|
simp only [PolyType, Δ, Int.cast_sub, exists_and_right]
|
||||||
|
@ -193,53 +191,21 @@ lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d
|
||||||
|
|
||||||
-- The "reverse" of Δ of 1 times increases the polynomial type by one
|
-- The "reverse" of Δ of 1 times increases the polynomial type by one
|
||||||
lemma Δ_1_ (f : ℤ → ℤ) (d : ℕ) : PolyType (Δ f 1) d → PolyType f (d + 1) := by
|
lemma Δ_1_ (f : ℤ → ℤ) (d : ℕ) : PolyType (Δ f 1) d → PolyType f (d + 1) := by
|
||||||
intro h
|
rintro ⟨P, N, ⟨h1, h2⟩⟩
|
||||||
simp only [PolyType, Nat.cast_add, Nat.cast_one, exists_and_right]
|
simp only [PolyType, Nat.cast_add, Nat.cast_one, exists_and_right]
|
||||||
rcases h with ⟨P, N, h⟩
|
|
||||||
rcases h with ⟨h1, h2⟩
|
|
||||||
let G := fun (q : ℤ) => f (N)
|
let G := fun (q : ℤ) => f (N)
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n →
|
||||||
lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
(Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
||||||
induction' d with d hd
|
induction' d with d hd
|
||||||
|
· rintro f ⟨c, N, hh⟩; rw [PolyType_0 f]; exact ⟨c, N, hh⟩
|
||||||
-- Base case
|
· exact fun f ⟨c, N, ⟨H, c0⟩⟩ =>
|
||||||
· intro f
|
Δ_1_ f d (hd (Δ f 1) ⟨c, N, fun n h => by rw [← H n h, Δ_1_s_equiv_Δ_s_1], c0⟩)
|
||||||
intro h
|
|
||||||
rcases h with ⟨c, N, hh⟩
|
|
||||||
rw [PolyType_0]
|
|
||||||
use c
|
|
||||||
use N
|
|
||||||
tauto
|
|
||||||
|
|
||||||
-- Induction step
|
|
||||||
· intro f
|
|
||||||
intro h
|
|
||||||
rcases h with ⟨c, N, h⟩
|
|
||||||
have this : PolyType f (d + 1) := by
|
|
||||||
rcases h with ⟨H,c0⟩
|
|
||||||
let g := (Δ f 1)
|
|
||||||
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by
|
|
||||||
use c; use N
|
|
||||||
constructor
|
|
||||||
· intro n
|
|
||||||
specialize H n
|
|
||||||
intro h
|
|
||||||
have this : Δ f (d + 1) n = c := by tauto
|
|
||||||
rw [←this]
|
|
||||||
rw [Δ_1_s_equiv_Δ_s_1]
|
|
||||||
· tauto
|
|
||||||
have this2 : PolyType g d := by
|
|
||||||
apply hd
|
|
||||||
tauto
|
|
||||||
exact Δ_1_ f d this2
|
|
||||||
exact this
|
|
||||||
|
|
||||||
-- [BH, 4.1.2] (a) => (b)
|
-- [BH, 4.1.2] (a) => (b)
|
||||||
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
||||||
lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := by
|
lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := fun h => (foo d f) h
|
||||||
sorry
|
|
||||||
|
|
||||||
-- [BH, 4.1.2] (a) <= (b)
|
-- [BH, 4.1.2] (a) <= (b)
|
||||||
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
||||||
|
|
|
@ -54,9 +54,20 @@ def symbolicIdeal(Q : Ideal R) {hin : Q.IsPrime} (I : Ideal R) : Ideal R where
|
||||||
rw [←mul_assoc, mul_comm s, mul_assoc]
|
rw [←mul_assoc, mul_comm s, mul_assoc]
|
||||||
exact Ideal.mul_mem_left _ _ hs2
|
exact Ideal.mul_mem_left _ _ hs2
|
||||||
|
|
||||||
|
|
||||||
|
theorem WF_interval_le_prime (I : Ideal R) (P : Ideal R) [P.IsPrime]
|
||||||
|
(h : ∀ J ∈ (Set.Icc I P), J.IsPrime → J = P ):
|
||||||
|
WellFounded ((· < ·) : (Set.Icc I P) → (Set.Icc I P) → Prop ) := sorry
|
||||||
|
|
||||||
protected lemma LocalRing.height_le_one_of_minimal_over_principle
|
protected lemma LocalRing.height_le_one_of_minimal_over_principle
|
||||||
[LocalRing R] (q : PrimeSpectrum R) {x : R}
|
[LocalRing R] {x : R}
|
||||||
(h : (closedPoint R).asIdeal ∈ (Ideal.span {x}).minimalPrimes) :
|
(h : (closedPoint R).asIdeal ∈ (Ideal.span {x}).minimalPrimes) :
|
||||||
q = closedPoint R ∨ Ideal.height q = 0 := by
|
Ideal.height (closedPoint R) ≤ 1 := by
|
||||||
|
-- by_contra hcont
|
||||||
|
-- push_neg at hcont
|
||||||
|
-- rw [Ideal.lt_height_iff'] at hcont
|
||||||
|
-- rcases hcont with ⟨c, hc1, hc2, hc3⟩
|
||||||
|
apply height_le_of_gt_height_lt
|
||||||
|
intro p hp
|
||||||
|
|
||||||
sorry
|
sorry
|
|
@ -19,6 +19,7 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
developed.
|
developed.
|
||||||
-/
|
-/
|
||||||
|
|
||||||
|
/-- If something is smaller that Bot of a PartialOrder after attaching another Bot, it must be Bot. -/
|
||||||
lemma lt_bot_eq_WithBot_bot [PartialOrder α] [OrderBot α] {a : WithBot α} (h : a < (⊥ : α)) : a = ⊥ := by
|
lemma lt_bot_eq_WithBot_bot [PartialOrder α] [OrderBot α] {a : WithBot α} (h : a < (⊥ : α)) : a = ⊥ := by
|
||||||
cases a
|
cases a
|
||||||
. rfl
|
. rfl
|
||||||
|
@ -29,18 +30,19 @@ open LocalRing
|
||||||
|
|
||||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||||
|
|
||||||
|
/-- Definitions -/
|
||||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||||
|
|
||||||
noncomputable def krullDim (R : Type _) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
noncomputable def krullDim (R : Type _) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||||
|
|
||||||
noncomputable def codimension (J : Ideal R) : WithBot ℕ∞ := ⨅ I ∈ {I : PrimeSpectrum R | J ≤ I.asIdeal}, height I
|
noncomputable def codimension (J : Ideal R) : WithBot ℕ∞ := ⨅ I ∈ {I : PrimeSpectrum R | J ≤ I.asIdeal}, height I
|
||||||
|
|
||||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||||
lemma krullDim_def (R : Type _) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
lemma krullDim_def (R : Type _) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||||
lemma krullDim_def' (R : Type _) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
lemma krullDim_def' (R : Type _) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||||
|
|
||||||
|
/-- A lattice structure on WithBot ℕ∞. -/
|
||||||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||||
|
|
||||||
|
/-- Height of ideals is monotonic. -/
|
||||||
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := by
|
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := by
|
||||||
apply Set.chainHeight_mono
|
apply Set.chainHeight_mono
|
||||||
intro J' hJ'
|
intro J' hJ'
|
||||||
|
@ -57,6 +59,38 @@ lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
||||||
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
||||||
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
||||||
|
|
||||||
|
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
|
||||||
|
@[simp]
|
||||||
|
lemma height_bot_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by
|
||||||
|
constructor
|
||||||
|
· intro h
|
||||||
|
unfold height at h
|
||||||
|
rw [bot_eq_zero] at h
|
||||||
|
simp only [Set.chainHeight_eq_zero_iff] at h
|
||||||
|
apply eq_bot_of_minimal
|
||||||
|
intro I
|
||||||
|
by_contra x
|
||||||
|
have : I ∈ {J | J < P} := x
|
||||||
|
rw [h] at this
|
||||||
|
contradiction
|
||||||
|
· intro h
|
||||||
|
unfold height
|
||||||
|
simp only [bot_eq_zero', Set.chainHeight_eq_zero_iff]
|
||||||
|
by_contra spec
|
||||||
|
change _ ≠ _ at spec
|
||||||
|
rw [← Set.nonempty_iff_ne_empty] at spec
|
||||||
|
obtain ⟨J, JlP : J < P⟩ := spec
|
||||||
|
have JneP : J ≠ P := ne_of_lt JlP
|
||||||
|
rw [h, ←bot_lt_iff_ne_bot, ←h] at JneP
|
||||||
|
have := not_lt_of_lt JneP
|
||||||
|
contradiction
|
||||||
|
|
||||||
|
@[simp]
|
||||||
|
lemma height_bot_eq {D: Type _} [CommRing D] [IsDomain D] : height (⊥ : PrimeSpectrum D) = ⊥ := by
|
||||||
|
rw [height_bot_iff_bot]
|
||||||
|
|
||||||
|
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
||||||
|
ideal of height ≥ n. -/
|
||||||
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by
|
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by
|
||||||
constructor
|
constructor
|
||||||
|
@ -95,8 +129,32 @@ lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||||
have : height I ≤ krullDim R := by apply height_le_krullDim
|
have : height I ≤ krullDim R := by apply height_le_krullDim
|
||||||
exact le_trans h this
|
exact le_trans h this
|
||||||
|
|
||||||
lemma le_krullDim_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
#check ENat.recTopCoe
|
||||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
|
|
||||||
|
/- terrible place for this lemma. Also this probably exists somewhere
|
||||||
|
Also this is a terrible proof
|
||||||
|
-/
|
||||||
|
lemma eq_top_iff (n : WithBot ℕ∞) : n = ⊤ ↔ ∀ m : ℕ, m ≤ n := by
|
||||||
|
aesop
|
||||||
|
induction' n using WithBot.recBotCoe with n
|
||||||
|
. exfalso
|
||||||
|
have := (a 0)
|
||||||
|
simp [not_lt_of_ge] at this
|
||||||
|
induction' n using ENat.recTopCoe with n
|
||||||
|
. rfl
|
||||||
|
. have := a (n + 1)
|
||||||
|
exfalso
|
||||||
|
change (((n + 1) : ℕ∞) : WithBot ℕ∞) ≤ _ at this
|
||||||
|
simp [WithBot.coe_le_coe] at this
|
||||||
|
change ((n + 1) : ℕ∞) ≤ (n : ℕ∞) at this
|
||||||
|
simp [ENat.add_one_le_iff] at this
|
||||||
|
|
||||||
|
lemma krullDim_eq_top_iff (R : Type _) [CommRing R] :
|
||||||
|
krullDim R = ⊤ ↔ ∀ (n : ℕ), ∃ I : PrimeSpectrum R, n ≤ height I := by
|
||||||
|
simp [eq_top_iff, le_krullDim_iff]
|
||||||
|
change (∀ (m : ℕ), ∃ I, ((m : ℕ∞) : WithBot ℕ∞) ≤ height I) ↔ _
|
||||||
|
simp [WithBot.coe_le_coe]
|
||||||
|
|
||||||
|
|
||||||
/-- The Krull dimension of a local ring is the height of its maximal ideal. -/
|
/-- The Krull dimension of a local ring is the height of its maximal ideal. -/
|
||||||
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
|
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
|
||||||
|
@ -206,9 +264,9 @@ lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal
|
||||||
. exact List.chain'_singleton _
|
. exact List.chain'_singleton _
|
||||||
. constructor
|
. constructor
|
||||||
. intro I' hI'
|
. intro I' hI'
|
||||||
simp at hI'
|
simp only [List.mem_singleton] at hI'
|
||||||
rwa [hI']
|
rwa [hI']
|
||||||
. simp
|
. simp only [List.length_singleton, Nat.cast_one, zero_add]
|
||||||
. contrapose! h
|
. contrapose! h
|
||||||
change (0 : ℕ∞) < (_ : WithBot ℕ∞) at h
|
change (0 : ℕ∞) < (_ : WithBot ℕ∞) at h
|
||||||
rw [lt_height_iff''] at h
|
rw [lt_height_iff''] at h
|
||||||
|
@ -235,7 +293,7 @@ lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum
|
||||||
|
|
||||||
/-- In a field, the unique prime ideal is the zero ideal. -/
|
/-- In a field, the unique prime ideal is the zero ideal. -/
|
||||||
@[simp]
|
@[simp]
|
||||||
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P = ⊥ := by
|
||||||
constructor
|
constructor
|
||||||
· intro primeP
|
· intro primeP
|
||||||
obtain T := eq_bot_or_top P
|
obtain T := eq_bot_or_top P
|
||||||
|
@ -246,25 +304,16 @@ lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P =
|
||||||
exact bot_prime
|
exact bot_prime
|
||||||
|
|
||||||
/-- In a field, all primes have height 0. -/
|
/-- In a field, all primes have height 0. -/
|
||||||
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] (P : PrimeSpectrum K) : height P = ⊥ := by
|
||||||
unfold height
|
have : IsPrime P.asIdeal := P.IsPrime
|
||||||
simp
|
rw [field_prime_bot] at this
|
||||||
by_contra spec
|
have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
|
||||||
change _ ≠ _ at spec
|
rwa [height_bot_iff_bot]
|
||||||
rw [← Set.nonempty_iff_ne_empty] at spec
|
|
||||||
obtain ⟨J, JlP : J < P⟩ := spec
|
|
||||||
have P0 : IsPrime P.asIdeal := P.IsPrime
|
|
||||||
have J0 : IsPrime J.asIdeal := J.IsPrime
|
|
||||||
rw [field_prime_bot] at P0 J0
|
|
||||||
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
|
||||||
have : J = P := PrimeSpectrum.ext J P this
|
|
||||||
have : J ≠ P := ne_of_lt JlP
|
|
||||||
contradiction
|
|
||||||
|
|
||||||
/-- The Krull dimension of a field is 0. -/
|
/-- The Krull dimension of a field is 0. -/
|
||||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||||
unfold krullDim
|
unfold krullDim
|
||||||
simp [field_prime_height_zero]
|
simp only [field_prime_height_bot, ciSup_unique]
|
||||||
|
|
||||||
/-- A domain with Krull dimension 0 is a field. -/
|
/-- A domain with Krull dimension 0 is a field. -/
|
||||||
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||||
|
@ -311,7 +360,7 @@ lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
|
||||||
rcases (lt_height_iff''.mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
|
rcases (lt_height_iff''.mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
|
||||||
norm_cast at hc3
|
norm_cast at hc3
|
||||||
rw [List.chain'_iff_get] at hc1
|
rw [List.chain'_iff_get] at hc1
|
||||||
specialize hc1 0 (by rw [hc3]; simp)
|
specialize hc1 0 (by rw [hc3]; simp only)
|
||||||
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
|
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
|
||||||
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
|
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
|
||||||
specialize hc2 q1 (List.get_mem _ _ _)
|
specialize hc2 q1 (List.get_mem _ _ _)
|
||||||
|
@ -325,6 +374,37 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
|
||||||
rw [dim_le_one_iff]
|
rw [dim_le_one_iff]
|
||||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||||
|
|
||||||
|
/-- The ring of polynomials over a field has dimension one. -/
|
||||||
|
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||||
|
rw [le_antisymm_iff]
|
||||||
|
let X := @Polynomial.X K _
|
||||||
|
constructor
|
||||||
|
· exact dim_le_one_of_pid
|
||||||
|
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||||
|
· obtain ⟨I, h⟩ := this
|
||||||
|
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||||
|
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||||
|
exact le_trans h this
|
||||||
|
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
|
||||||
|
have : IsPrime (span {X}) := by
|
||||||
|
refine (span_singleton_prime ?hp).mpr primeX
|
||||||
|
exact Polynomial.X_ne_zero
|
||||||
|
let P := PrimeSpectrum.mk (span {X}) this
|
||||||
|
unfold height
|
||||||
|
use P
|
||||||
|
have : ⊥ ∈ {J | J < P} := by
|
||||||
|
simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot]
|
||||||
|
suffices : P.asIdeal ≠ ⊥
|
||||||
|
· by_contra x
|
||||||
|
rw [PrimeSpectrum.ext_iff] at x
|
||||||
|
contradiction
|
||||||
|
by_contra x
|
||||||
|
simp only [span_singleton_eq_bot] at x
|
||||||
|
have := @Polynomial.X_ne_zero K _ _
|
||||||
|
contradiction
|
||||||
|
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
|
||||||
|
rwa [←Set.one_le_chainHeight_iff, ←WithBot.one_le_coe] at this
|
||||||
|
|
||||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||||
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry
|
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry
|
||||||
|
|
||||||
|
|
167
CommAlg/polynomial.lean
Normal file
167
CommAlg/polynomial.lean
Normal file
|
@ -0,0 +1,167 @@
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
import Mathlib.RingTheory.FiniteType
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.Polynomial.Quotient
|
||||||
|
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||||
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
|
import CommAlg.krull
|
||||||
|
|
||||||
|
section ChainLemma
|
||||||
|
variable {α β : Type _}
|
||||||
|
variable [LT α] [LT β] (s t : Set α)
|
||||||
|
|
||||||
|
namespace Set
|
||||||
|
open List
|
||||||
|
|
||||||
|
/-
|
||||||
|
Sorry for using aesop, but it doesn't take that long
|
||||||
|
-/
|
||||||
|
theorem append_mem_subchain_iff :
|
||||||
|
l ++ l' ∈ s.subchain ↔ l ∈ s.subchain ∧ l' ∈ s.subchain ∧ ∀ a ∈ l.getLast?, ∀ b ∈ l'.head?, a < b := by
|
||||||
|
simp [subchain, chain'_append]
|
||||||
|
aesop
|
||||||
|
|
||||||
|
end Set
|
||||||
|
end ChainLemma
|
||||||
|
|
||||||
|
variable {R : Type _} [CommRing R]
|
||||||
|
open Ideal Polynomial
|
||||||
|
|
||||||
|
namespace Polynomial
|
||||||
|
/-
|
||||||
|
The composition R → R[X] → R is the identity
|
||||||
|
-/
|
||||||
|
theorem coeff_C_eq : RingHom.comp constantCoeff C = RingHom.id R := by ext; simp
|
||||||
|
|
||||||
|
end Polynomial
|
||||||
|
|
||||||
|
/-
|
||||||
|
Given an ideal I in R, we define the ideal adjoin_x' I to be the kernel
|
||||||
|
of R[X] → R → R/I
|
||||||
|
-/
|
||||||
|
def adj_x_map (I : Ideal R) : R[X] →+* R ⧸ I := (Ideal.Quotient.mk I).comp constantCoeff
|
||||||
|
def adjoin_x' (I : Ideal R) : Ideal (Polynomial R) := RingHom.ker (adj_x_map I)
|
||||||
|
def adjoin_x (I : PrimeSpectrum R) : PrimeSpectrum (Polynomial R) where
|
||||||
|
asIdeal := adjoin_x' I.asIdeal
|
||||||
|
IsPrime := RingHom.ker_isPrime _
|
||||||
|
|
||||||
|
@[simp]
|
||||||
|
lemma adj_x_comp_C (I : Ideal R) : RingHom.comp (adj_x_map I) C = Ideal.Quotient.mk I := by
|
||||||
|
ext x; simp [adj_x_map]
|
||||||
|
|
||||||
|
lemma adjoin_x_eq (I : Ideal R) : adjoin_x' I = I.map C ⊔ Ideal.span {X} := by
|
||||||
|
apply le_antisymm
|
||||||
|
. rintro p hp
|
||||||
|
have h : ∃ q r, p = C r + X * q := ⟨p.divX, p.coeff 0, p.divX_mul_X_add.symm.trans $ by ring⟩
|
||||||
|
obtain ⟨q, r, rfl⟩ := h
|
||||||
|
suffices : r ∈ I
|
||||||
|
. simp only [Submodule.mem_sup, Ideal.mem_span_singleton]
|
||||||
|
refine' ⟨C r, Ideal.mem_map_of_mem C this, X * q, ⟨q, rfl⟩, rfl⟩
|
||||||
|
rw [adjoin_x', adj_x_map, RingHom.mem_ker, RingHom.comp_apply] at hp
|
||||||
|
rw [constantCoeff_apply, coeff_add, coeff_C_zero, coeff_X_mul_zero, add_zero] at hp
|
||||||
|
rwa [←RingHom.mem_ker, Ideal.mk_ker] at hp
|
||||||
|
. rw [sup_le_iff]
|
||||||
|
constructor
|
||||||
|
. simp [adjoin_x', RingHom.ker, ←map_le_iff_le_comap, Ideal.map_map]
|
||||||
|
. simp [span_le, adjoin_x', RingHom.mem_ker, adj_x_map]
|
||||||
|
|
||||||
|
/-
|
||||||
|
If I is prime in R, the pushforward I*R[X] is prime in R[X]
|
||||||
|
-/
|
||||||
|
def map_prime (I : PrimeSpectrum R) : PrimeSpectrum R[X] :=
|
||||||
|
⟨I.asIdeal.map C, isPrime_map_C_of_isPrime I.IsPrime⟩
|
||||||
|
|
||||||
|
/-
|
||||||
|
The pushforward map (Ideal R) → (Ideal R[X]) is injective
|
||||||
|
-/
|
||||||
|
lemma map_inj {I J : Ideal R} (h : I.map C = J.map C) : I = J := by
|
||||||
|
have H : map constantCoeff (I.map C) = map constantCoeff (J.map C) := by rw [h]
|
||||||
|
simp [Ideal.map_map, coeff_C_eq] at H
|
||||||
|
exact H
|
||||||
|
|
||||||
|
/-
|
||||||
|
The pushforward map (Ideal R) → (Ideal R[X]) is strictly monotone
|
||||||
|
-/
|
||||||
|
lemma map_strictmono {I J : Ideal R} (h : I < J) : I.map C < J.map C := by
|
||||||
|
rw [lt_iff_le_and_ne] at h ⊢
|
||||||
|
exact ⟨map_mono h.1, fun H => h.2 (map_inj H)⟩
|
||||||
|
|
||||||
|
lemma map_lt_adjoin_x (I : PrimeSpectrum R) : map_prime I < adjoin_x I := by
|
||||||
|
simp [adjoin_x, adjoin_x_eq]
|
||||||
|
show I.asIdeal.map C < I.asIdeal.map C ⊔ span {X}
|
||||||
|
simp [Ideal.span_le, mem_map_C_iff]
|
||||||
|
use 1
|
||||||
|
simp
|
||||||
|
rw [←Ideal.eq_top_iff_one]
|
||||||
|
exact I.IsPrime.ne_top'
|
||||||
|
|
||||||
|
lemma ht_adjoin_x_eq_ht_add_one [Nontrivial R] (I : PrimeSpectrum R) : height I + 1 ≤ height (adjoin_x I) := by
|
||||||
|
suffices H : height I + (1 : ℕ) ≤ height (adjoin_x I) + (0 : ℕ)
|
||||||
|
. norm_cast at H; rw [add_zero] at H; exact H
|
||||||
|
rw [height, height, Set.chainHeight_add_le_chainHeight_add {J | J < I} _ 1 0]
|
||||||
|
intro l hl
|
||||||
|
use ((l.map map_prime) ++ [map_prime I])
|
||||||
|
refine' ⟨_, by simp⟩
|
||||||
|
. simp [Set.append_mem_subchain_iff]
|
||||||
|
refine' ⟨_, map_lt_adjoin_x I, fun a ha => _⟩
|
||||||
|
. refine' ⟨_, fun i hi => _⟩
|
||||||
|
. apply List.chain'_map_of_chain' map_prime (fun a b hab => map_strictmono hab) hl.1
|
||||||
|
. rw [List.mem_map] at hi
|
||||||
|
obtain ⟨a, ha, rfl⟩ := hi
|
||||||
|
calc map_prime a < map_prime I := by apply map_strictmono; apply hl.2; apply ha
|
||||||
|
_ < adjoin_x I := by apply map_lt_adjoin_x
|
||||||
|
. have H : ∃ b : PrimeSpectrum R, b ∈ l ∧ map_prime b = a
|
||||||
|
. have H2 : l ≠ []
|
||||||
|
. intro h
|
||||||
|
rw [h] at ha
|
||||||
|
tauto
|
||||||
|
use l.getLast H2
|
||||||
|
refine' ⟨List.getLast_mem H2, _⟩
|
||||||
|
have H3 : l.map map_prime ≠ []
|
||||||
|
. intro hl
|
||||||
|
apply H2
|
||||||
|
apply List.eq_nil_of_map_eq_nil hl
|
||||||
|
rw [List.getLast?_eq_getLast _ H3, Option.some_inj] at ha
|
||||||
|
simp [←ha, List.getLast_map _ H2]
|
||||||
|
obtain ⟨b, hb, rfl⟩ := H
|
||||||
|
apply map_strictmono
|
||||||
|
apply hl.2
|
||||||
|
exact hb
|
||||||
|
|
||||||
|
#check (⊤ : ℕ∞)
|
||||||
|
/-
|
||||||
|
dim R + 1 ≤ dim R[X]
|
||||||
|
-/
|
||||||
|
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||||
|
krullDim R + (1 : ℕ∞) ≤ krullDim R[X] := by
|
||||||
|
obtain ⟨n, hn⟩ := krullDim_nonneg_of_nontrivial R
|
||||||
|
rw [hn]
|
||||||
|
change ↑(n + 1) ≤ krullDim R[X]
|
||||||
|
have := le_of_eq hn.symm
|
||||||
|
induction' n using ENat.recTopCoe with n
|
||||||
|
. change krullDim R = ⊤ at hn
|
||||||
|
change ⊤ ≤ krullDim R[X]
|
||||||
|
rw [krullDim_eq_top_iff] at hn
|
||||||
|
rw [top_le_iff, krullDim_eq_top_iff]
|
||||||
|
intro n
|
||||||
|
obtain ⟨I, hI⟩ := hn n
|
||||||
|
use adjoin_x I
|
||||||
|
calc n ≤ height I := hI
|
||||||
|
_ ≤ height I + 1 := le_self_add
|
||||||
|
_ ≤ height (adjoin_x I) := ht_adjoin_x_eq_ht_add_one I
|
||||||
|
change n ≤ krullDim R at this
|
||||||
|
change (n + 1 : ℕ) ≤ krullDim R[X]
|
||||||
|
rw [le_krullDim_iff] at this ⊢
|
||||||
|
obtain ⟨I, hI⟩ := this
|
||||||
|
use adjoin_x I
|
||||||
|
apply WithBot.coe_mono
|
||||||
|
calc n + 1 ≤ height I + 1 := by
|
||||||
|
apply add_le_add_right
|
||||||
|
change ((n : ℕ∞) : WithBot ℕ∞) ≤ (height I) at hI
|
||||||
|
rw [WithBot.coe_le_coe] at hI
|
||||||
|
exact hI
|
||||||
|
_ ≤ height (adjoin_x I) := ht_adjoin_x_eq_ht_add_one I
|
|
@ -1,39 +1,87 @@
|
||||||
import CommAlg.krull
|
import CommAlg.krull
|
||||||
import Mathlib.RingTheory.Ideal.Operations
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
import Mathlib.RingTheory.FiniteType
|
|
||||||
import Mathlib.Order.Height
|
import Mathlib.Order.Height
|
||||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
import Mathlib.RingTheory.Ideal.Quotient
|
|
||||||
import Mathlib.RingTheory.Ideal.MinimalPrime
|
|
||||||
import Mathlib.RingTheory.Localization.AtPrime
|
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|
||||||
|
|
||||||
namespace Ideal
|
namespace Ideal
|
||||||
|
|
||||||
|
private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] : Set.chainHeight {(⊥ : α)} ≤ 1 := by
|
||||||
|
unfold Set.chainHeight
|
||||||
|
simp only [iSup_le_iff, Nat.cast_le_one]
|
||||||
|
intro L h
|
||||||
|
unfold Set.subchain at h
|
||||||
|
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at h
|
||||||
|
rcases L with (_ | ⟨a,L⟩)
|
||||||
|
. simp only [List.length_nil, zero_le]
|
||||||
|
rcases L with (_ | ⟨b,L⟩)
|
||||||
|
. simp only [List.length_singleton, le_refl]
|
||||||
|
simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h
|
||||||
|
rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩
|
||||||
|
exact absurd h1 (lt_irrefl _)
|
||||||
|
|
||||||
|
/-- The ring of polynomials over a field has dimension one. -/
|
||||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||||
-- unfold krullDim
|
|
||||||
rw [le_antisymm_iff]
|
rw [le_antisymm_iff]
|
||||||
|
let X := @Polynomial.X K _
|
||||||
constructor
|
constructor
|
||||||
·
|
· unfold krullDim
|
||||||
sorry
|
apply @iSup_le (WithBot ℕ∞) _ _ _ _
|
||||||
|
intro I
|
||||||
|
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
|
||||||
|
by_cases I = ⊥
|
||||||
|
· rw [← height_bot_iff_bot] at h
|
||||||
|
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||||
|
rw [h]
|
||||||
|
exact bot_le
|
||||||
|
· push_neg at h
|
||||||
|
have : I.asIdeal ≠ ⊥ := by
|
||||||
|
by_contra a
|
||||||
|
have : I = ⊥ := PrimeSpectrum.ext I ⊥ a
|
||||||
|
contradiction
|
||||||
|
have maxI := IsPrime.to_maximal_ideal this
|
||||||
|
have sngletn : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
|
||||||
|
intro P
|
||||||
|
constructor
|
||||||
|
· intro H
|
||||||
|
simp only [Set.mem_setOf_eq] at H
|
||||||
|
by_contra x
|
||||||
|
push_neg at x
|
||||||
|
have : P.asIdeal ≠ ⊥ := by
|
||||||
|
by_contra a
|
||||||
|
have : P = ⊥ := PrimeSpectrum.ext P ⊥ a
|
||||||
|
contradiction
|
||||||
|
have maxP := IsPrime.to_maximal_ideal this
|
||||||
|
have IneTop := IsMaximal.ne_top maxI
|
||||||
|
have : P ≤ I := le_of_lt H
|
||||||
|
rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this
|
||||||
|
have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this
|
||||||
|
have : P = I := PrimeSpectrum.ext P I this
|
||||||
|
replace H : P ≠ I := ne_of_lt H
|
||||||
|
contradiction
|
||||||
|
· intro pBot
|
||||||
|
simp only [Set.mem_setOf_eq, pBot]
|
||||||
|
exact lt_of_le_of_ne bot_le h.symm
|
||||||
|
replace sngletn : {J | J < I} = {⊥} := Set.ext sngletn
|
||||||
|
unfold height
|
||||||
|
rw [sngletn]
|
||||||
|
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||||
|
exact singleton_bot_chainHeight_one
|
||||||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||||
· obtain ⟨I, h⟩ := this
|
· obtain ⟨I, h⟩ := this
|
||||||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||||
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||||
exact le_trans h this
|
exact le_trans h this
|
||||||
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
|
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
|
||||||
let X := @Polynomial.X K _
|
|
||||||
have : IsPrime (span {X}) := by
|
have : IsPrime (span {X}) := by
|
||||||
refine Iff.mpr (span_singleton_prime ?hp) primeX
|
refine (span_singleton_prime ?hp).mpr primeX
|
||||||
exact Polynomial.X_ne_zero
|
exact Polynomial.X_ne_zero
|
||||||
let P := PrimeSpectrum.mk (span {X}) this
|
let P := PrimeSpectrum.mk (span {X}) this
|
||||||
unfold height
|
unfold height
|
||||||
use P
|
use P
|
||||||
have : ⊥ ∈ {J | J < P} := by
|
have : ⊥ ∈ {J | J < P} := by
|
||||||
simp only [Set.mem_setOf_eq]
|
simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot]
|
||||||
rw [bot_lt_iff_ne_bot]
|
|
||||||
suffices : P.asIdeal ≠ ⊥
|
suffices : P.asIdeal ≠ ⊥
|
||||||
· by_contra x
|
· by_contra x
|
||||||
rw [PrimeSpectrum.ext_iff] at x
|
rw [PrimeSpectrum.ext_iff] at x
|
||||||
|
|
Loading…
Reference in a new issue