diff --git a/CommAlg/final_poly_type.lean b/CommAlg/final_poly_type.lean index 6c9e556..9388083 100644 --- a/CommAlg/final_poly_type.lean +++ b/CommAlg/final_poly_type.lean @@ -54,8 +54,6 @@ noncomputable section def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly) ∧ d = Polynomial.degree Poly section -#check PolyType - example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by unfold PolyType sorry @@ -139,8 +137,8 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : -- Δ of 0 times preserves the function lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by rfl - --simp only [Δ] --- Δ of 1 times decreaes the polynomial type by one + +-- Δ of 1 times decreaes the polynomial type by one --can be golfed lemma Δ_1 (f : ℤ → ℤ) (d : ℕ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by intro h simp only [PolyType, Δ, Int.cast_sub, exists_and_right] @@ -193,53 +191,21 @@ lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d -- The "reverse" of Δ of 1 times increases the polynomial type by one lemma Δ_1_ (f : ℤ → ℤ) (d : ℕ) : PolyType (Δ f 1) d → PolyType f (d + 1) := by - intro h + rintro ⟨P, N, ⟨h1, h2⟩⟩ simp only [PolyType, Nat.cast_add, Nat.cast_one, exists_and_right] - rcases h with ⟨P, N, h⟩ - rcases h with ⟨h1, h2⟩ let G := fun (q : ℤ) => f (N) sorry - -lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by +lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → + (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by induction' d with d hd - - -- Base case - · intro f - intro h - rcases h with ⟨c, N, hh⟩ - rw [PolyType_0] - use c - use N - tauto - - -- Induction step - · intro f - intro h - rcases h with ⟨c, N, h⟩ - have this : PolyType f (d + 1) := by - rcases h with ⟨H,c0⟩ - let g := (Δ f 1) - have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by - use c; use N - constructor - · intro n - specialize H n - intro h - have this : Δ f (d + 1) n = c := by tauto - rw [←this] - rw [Δ_1_s_equiv_Δ_s_1] - · tauto - have this2 : PolyType g d := by - apply hd - tauto - exact Δ_1_ f d this2 - exact this + · rintro f ⟨c, N, hh⟩; rw [PolyType_0 f]; exact ⟨c, N, hh⟩ + · exact fun f ⟨c, N, ⟨H, c0⟩⟩ => + Δ_1_ f d (hd (Δ f 1) ⟨c, N, fun n h => by rw [← H n h, Δ_1_s_equiv_Δ_s_1], c0⟩) -- [BH, 4.1.2] (a) => (b) -- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d -lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := by - sorry +lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := fun h => (foo d f) h -- [BH, 4.1.2] (a) <= (b) -- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0 diff --git a/CommAlg/grant2.lean b/CommAlg/grant2.lean index 0e3092e..24edcff 100644 --- a/CommAlg/grant2.lean +++ b/CommAlg/grant2.lean @@ -54,9 +54,20 @@ def symbolicIdeal(Q : Ideal R) {hin : Q.IsPrime} (I : Ideal R) : Ideal R where rw [←mul_assoc, mul_comm s, mul_assoc] exact Ideal.mul_mem_left _ _ hs2 + +theorem WF_interval_le_prime (I : Ideal R) (P : Ideal R) [P.IsPrime] + (h : ∀ J ∈ (Set.Icc I P), J.IsPrime → J = P ): + WellFounded ((· < ·) : (Set.Icc I P) → (Set.Icc I P) → Prop ) := sorry + protected lemma LocalRing.height_le_one_of_minimal_over_principle - [LocalRing R] (q : PrimeSpectrum R) {x : R} + [LocalRing R] {x : R} (h : (closedPoint R).asIdeal ∈ (Ideal.span {x}).minimalPrimes) : - q = closedPoint R ∨ Ideal.height q = 0 := by - + Ideal.height (closedPoint R) ≤ 1 := by + -- by_contra hcont + -- push_neg at hcont + -- rw [Ideal.lt_height_iff'] at hcont + -- rcases hcont with ⟨c, hc1, hc2, hc3⟩ + apply height_le_of_gt_height_lt + intro p hp + sorry \ No newline at end of file diff --git a/CommAlg/krull.lean b/CommAlg/krull.lean index e44fa91..7d4a31c 100644 --- a/CommAlg/krull.lean +++ b/CommAlg/krull.lean @@ -19,6 +19,7 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic developed. -/ +/-- If something is smaller that Bot of a PartialOrder after attaching another Bot, it must be Bot. -/ lemma lt_bot_eq_WithBot_bot [PartialOrder α] [OrderBot α] {a : WithBot α} (h : a < (⊥ : α)) : a = ⊥ := by cases a . rfl @@ -29,18 +30,19 @@ open LocalRing variable {R : Type _} [CommRing R] (I : PrimeSpectrum R) +/-- Definitions -/ noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I} - noncomputable def krullDim (R : Type _) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I - noncomputable def codimension (J : Ideal R) : WithBot ℕ∞ := ⨅ I ∈ {I : PrimeSpectrum R | J ≤ I.asIdeal}, height I lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl lemma krullDim_def (R : Type _) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl lemma krullDim_def' (R : Type _) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl +/-- A lattice structure on WithBot ℕ∞. -/ noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice +/-- Height of ideals is monotonic. -/ lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := by apply Set.chainHeight_mono intro J' hJ' @@ -57,6 +59,38 @@ lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) : lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R := le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I +/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/ +@[simp] +lemma height_bot_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by + constructor + · intro h + unfold height at h + rw [bot_eq_zero] at h + simp only [Set.chainHeight_eq_zero_iff] at h + apply eq_bot_of_minimal + intro I + by_contra x + have : I ∈ {J | J < P} := x + rw [h] at this + contradiction + · intro h + unfold height + simp only [bot_eq_zero', Set.chainHeight_eq_zero_iff] + by_contra spec + change _ ≠ _ at spec + rw [← Set.nonempty_iff_ne_empty] at spec + obtain ⟨J, JlP : J < P⟩ := spec + have JneP : J ≠ P := ne_of_lt JlP + rw [h, ←bot_lt_iff_ne_bot, ←h] at JneP + have := not_lt_of_lt JneP + contradiction + +@[simp] +lemma height_bot_eq {D: Type _} [CommRing D] [IsDomain D] : height (⊥ : PrimeSpectrum D) = ⊥ := by + rw [height_bot_iff_bot] + +/-- The Krull dimension of a ring being ≥ n is equivalent to there being an + ideal of height ≥ n. -/ lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) : n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by constructor @@ -95,8 +129,32 @@ lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) : have : height I ≤ krullDim R := by apply height_le_krullDim exact le_trans h this -lemma le_krullDim_iff' (R : Type _) [CommRing R] (n : ℕ∞) : - n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry +#check ENat.recTopCoe + +/- terrible place for this lemma. Also this probably exists somewhere + Also this is a terrible proof +-/ +lemma eq_top_iff (n : WithBot ℕ∞) : n = ⊤ ↔ ∀ m : ℕ, m ≤ n := by + aesop + induction' n using WithBot.recBotCoe with n + . exfalso + have := (a 0) + simp [not_lt_of_ge] at this + induction' n using ENat.recTopCoe with n + . rfl + . have := a (n + 1) + exfalso + change (((n + 1) : ℕ∞) : WithBot ℕ∞) ≤ _ at this + simp [WithBot.coe_le_coe] at this + change ((n + 1) : ℕ∞) ≤ (n : ℕ∞) at this + simp [ENat.add_one_le_iff] at this + +lemma krullDim_eq_top_iff (R : Type _) [CommRing R] : + krullDim R = ⊤ ↔ ∀ (n : ℕ), ∃ I : PrimeSpectrum R, n ≤ height I := by + simp [eq_top_iff, le_krullDim_iff] + change (∀ (m : ℕ), ∃ I, ((m : ℕ∞) : WithBot ℕ∞) ≤ height I) ↔ _ + simp [WithBot.coe_le_coe] + /-- The Krull dimension of a local ring is the height of its maximal ideal. -/ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by @@ -206,9 +264,9 @@ lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal . exact List.chain'_singleton _ . constructor . intro I' hI' - simp at hI' + simp only [List.mem_singleton] at hI' rwa [hI'] - . simp + . simp only [List.length_singleton, Nat.cast_one, zero_add] . contrapose! h change (0 : ℕ∞) < (_ : WithBot ℕ∞) at h rw [lt_height_iff''] at h @@ -235,7 +293,7 @@ lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum /-- In a field, the unique prime ideal is the zero ideal. -/ @[simp] -lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by +lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P = ⊥ := by constructor · intro primeP obtain T := eq_bot_or_top P @@ -246,25 +304,16 @@ lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = exact bot_prime /-- In a field, all primes have height 0. -/ -lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by - unfold height - simp - by_contra spec - change _ ≠ _ at spec - rw [← Set.nonempty_iff_ne_empty] at spec - obtain ⟨J, JlP : J < P⟩ := spec - have P0 : IsPrime P.asIdeal := P.IsPrime - have J0 : IsPrime J.asIdeal := J.IsPrime - rw [field_prime_bot] at P0 J0 - have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0) - have : J = P := PrimeSpectrum.ext J P this - have : J ≠ P := ne_of_lt JlP - contradiction +lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] (P : PrimeSpectrum K) : height P = ⊥ := by + have : IsPrime P.asIdeal := P.IsPrime + rw [field_prime_bot] at this + have : P = ⊥ := PrimeSpectrum.ext P ⊥ this + rwa [height_bot_iff_bot] /-- The Krull dimension of a field is 0. -/ lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by unfold krullDim - simp [field_prime_height_zero] + simp only [field_prime_height_bot, ciSup_unique] /-- A domain with Krull dimension 0 is a field. -/ lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by @@ -311,7 +360,7 @@ lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by rcases (lt_height_iff''.mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩ norm_cast at hc3 rw [List.chain'_iff_get] at hc1 - specialize hc1 0 (by rw [hc3]; simp) + specialize hc1 0 (by rw [hc3]; simp only) set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ } set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ } specialize hc2 q1 (List.get_mem _ _ _) @@ -325,6 +374,37 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 rw [dim_le_one_iff] exact Ring.DimensionLEOne.principal_ideal_ring R +/-- The ring of polynomials over a field has dimension one. -/ +lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by + rw [le_antisymm_iff] + let X := @Polynomial.X K _ + constructor + · exact dim_le_one_of_pid + · suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞) + · obtain ⟨I, h⟩ := this + have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by + apply @le_iSup (WithBot ℕ∞) _ _ _ I + exact le_trans h this + have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _ + have : IsPrime (span {X}) := by + refine (span_singleton_prime ?hp).mpr primeX + exact Polynomial.X_ne_zero + let P := PrimeSpectrum.mk (span {X}) this + unfold height + use P + have : ⊥ ∈ {J | J < P} := by + simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot] + suffices : P.asIdeal ≠ ⊥ + · by_contra x + rw [PrimeSpectrum.ext_iff] at x + contradiction + by_contra x + simp only [span_singleton_eq_bot] at x + have := @Polynomial.X_ne_zero K _ _ + contradiction + have : {J | J < P}.Nonempty := Set.nonempty_of_mem this + rwa [←Set.one_le_chainHeight_iff, ←WithBot.one_le_coe] at this + lemma dim_le_dim_polynomial_add_one [Nontrivial R] : krullDim R + 1 ≤ krullDim (Polynomial R) := sorry diff --git a/CommAlg/polynomial.lean b/CommAlg/polynomial.lean new file mode 100644 index 0000000..8dd886a --- /dev/null +++ b/CommAlg/polynomial.lean @@ -0,0 +1,167 @@ +import Mathlib.RingTheory.Ideal.Operations +import Mathlib.RingTheory.FiniteType +import Mathlib.Order.Height +import Mathlib.RingTheory.Polynomial.Quotient +import Mathlib.RingTheory.PrincipalIdealDomain +import Mathlib.RingTheory.DedekindDomain.Basic +import Mathlib.RingTheory.Ideal.Quotient +import Mathlib.RingTheory.Localization.AtPrime +import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic +import Mathlib.Order.ConditionallyCompleteLattice.Basic +import CommAlg.krull + +section ChainLemma +variable {α β : Type _} +variable [LT α] [LT β] (s t : Set α) + +namespace Set +open List + +/- +Sorry for using aesop, but it doesn't take that long +-/ +theorem append_mem_subchain_iff : +l ++ l' ∈ s.subchain ↔ l ∈ s.subchain ∧ l' ∈ s.subchain ∧ ∀ a ∈ l.getLast?, ∀ b ∈ l'.head?, a < b := by + simp [subchain, chain'_append] + aesop + +end Set +end ChainLemma + +variable {R : Type _} [CommRing R] +open Ideal Polynomial + +namespace Polynomial +/- +The composition R → R[X] → R is the identity +-/ +theorem coeff_C_eq : RingHom.comp constantCoeff C = RingHom.id R := by ext; simp + +end Polynomial + +/- +Given an ideal I in R, we define the ideal adjoin_x' I to be the kernel +of R[X] → R → R/I +-/ +def adj_x_map (I : Ideal R) : R[X] →+* R ⧸ I := (Ideal.Quotient.mk I).comp constantCoeff +def adjoin_x' (I : Ideal R) : Ideal (Polynomial R) := RingHom.ker (adj_x_map I) +def adjoin_x (I : PrimeSpectrum R) : PrimeSpectrum (Polynomial R) where + asIdeal := adjoin_x' I.asIdeal + IsPrime := RingHom.ker_isPrime _ + +@[simp] +lemma adj_x_comp_C (I : Ideal R) : RingHom.comp (adj_x_map I) C = Ideal.Quotient.mk I := by + ext x; simp [adj_x_map] + +lemma adjoin_x_eq (I : Ideal R) : adjoin_x' I = I.map C ⊔ Ideal.span {X} := by + apply le_antisymm + . rintro p hp + have h : ∃ q r, p = C r + X * q := ⟨p.divX, p.coeff 0, p.divX_mul_X_add.symm.trans $ by ring⟩ + obtain ⟨q, r, rfl⟩ := h + suffices : r ∈ I + . simp only [Submodule.mem_sup, Ideal.mem_span_singleton] + refine' ⟨C r, Ideal.mem_map_of_mem C this, X * q, ⟨q, rfl⟩, rfl⟩ + rw [adjoin_x', adj_x_map, RingHom.mem_ker, RingHom.comp_apply] at hp + rw [constantCoeff_apply, coeff_add, coeff_C_zero, coeff_X_mul_zero, add_zero] at hp + rwa [←RingHom.mem_ker, Ideal.mk_ker] at hp + . rw [sup_le_iff] + constructor + . simp [adjoin_x', RingHom.ker, ←map_le_iff_le_comap, Ideal.map_map] + . simp [span_le, adjoin_x', RingHom.mem_ker, adj_x_map] + +/- +If I is prime in R, the pushforward I*R[X] is prime in R[X] +-/ +def map_prime (I : PrimeSpectrum R) : PrimeSpectrum R[X] := + ⟨I.asIdeal.map C, isPrime_map_C_of_isPrime I.IsPrime⟩ + +/- +The pushforward map (Ideal R) → (Ideal R[X]) is injective +-/ +lemma map_inj {I J : Ideal R} (h : I.map C = J.map C) : I = J := by + have H : map constantCoeff (I.map C) = map constantCoeff (J.map C) := by rw [h] + simp [Ideal.map_map, coeff_C_eq] at H + exact H + +/- +The pushforward map (Ideal R) → (Ideal R[X]) is strictly monotone +-/ +lemma map_strictmono {I J : Ideal R} (h : I < J) : I.map C < J.map C := by + rw [lt_iff_le_and_ne] at h ⊢ + exact ⟨map_mono h.1, fun H => h.2 (map_inj H)⟩ + +lemma map_lt_adjoin_x (I : PrimeSpectrum R) : map_prime I < adjoin_x I := by + simp [adjoin_x, adjoin_x_eq] + show I.asIdeal.map C < I.asIdeal.map C ⊔ span {X} + simp [Ideal.span_le, mem_map_C_iff] + use 1 + simp + rw [←Ideal.eq_top_iff_one] + exact I.IsPrime.ne_top' + +lemma ht_adjoin_x_eq_ht_add_one [Nontrivial R] (I : PrimeSpectrum R) : height I + 1 ≤ height (adjoin_x I) := by + suffices H : height I + (1 : ℕ) ≤ height (adjoin_x I) + (0 : ℕ) + . norm_cast at H; rw [add_zero] at H; exact H + rw [height, height, Set.chainHeight_add_le_chainHeight_add {J | J < I} _ 1 0] + intro l hl + use ((l.map map_prime) ++ [map_prime I]) + refine' ⟨_, by simp⟩ + . simp [Set.append_mem_subchain_iff] + refine' ⟨_, map_lt_adjoin_x I, fun a ha => _⟩ + . refine' ⟨_, fun i hi => _⟩ + . apply List.chain'_map_of_chain' map_prime (fun a b hab => map_strictmono hab) hl.1 + . rw [List.mem_map] at hi + obtain ⟨a, ha, rfl⟩ := hi + calc map_prime a < map_prime I := by apply map_strictmono; apply hl.2; apply ha + _ < adjoin_x I := by apply map_lt_adjoin_x + . have H : ∃ b : PrimeSpectrum R, b ∈ l ∧ map_prime b = a + . have H2 : l ≠ [] + . intro h + rw [h] at ha + tauto + use l.getLast H2 + refine' ⟨List.getLast_mem H2, _⟩ + have H3 : l.map map_prime ≠ [] + . intro hl + apply H2 + apply List.eq_nil_of_map_eq_nil hl + rw [List.getLast?_eq_getLast _ H3, Option.some_inj] at ha + simp [←ha, List.getLast_map _ H2] + obtain ⟨b, hb, rfl⟩ := H + apply map_strictmono + apply hl.2 + exact hb + +#check (⊤ : ℕ∞) +/- +dim R + 1 ≤ dim R[X] +-/ +lemma dim_le_dim_polynomial_add_one [Nontrivial R] : + krullDim R + (1 : ℕ∞) ≤ krullDim R[X] := by + obtain ⟨n, hn⟩ := krullDim_nonneg_of_nontrivial R + rw [hn] + change ↑(n + 1) ≤ krullDim R[X] + have := le_of_eq hn.symm + induction' n using ENat.recTopCoe with n + . change krullDim R = ⊤ at hn + change ⊤ ≤ krullDim R[X] + rw [krullDim_eq_top_iff] at hn + rw [top_le_iff, krullDim_eq_top_iff] + intro n + obtain ⟨I, hI⟩ := hn n + use adjoin_x I + calc n ≤ height I := hI + _ ≤ height I + 1 := le_self_add + _ ≤ height (adjoin_x I) := ht_adjoin_x_eq_ht_add_one I + change n ≤ krullDim R at this + change (n + 1 : ℕ) ≤ krullDim R[X] + rw [le_krullDim_iff] at this ⊢ + obtain ⟨I, hI⟩ := this + use adjoin_x I + apply WithBot.coe_mono + calc n + 1 ≤ height I + 1 := by + apply add_le_add_right + change ((n : ℕ∞) : WithBot ℕ∞) ≤ (height I) at hI + rw [WithBot.coe_le_coe] at hI + exact hI + _ ≤ height (adjoin_x I) := ht_adjoin_x_eq_ht_add_one I \ No newline at end of file diff --git a/CommAlg/sayantan(poly_over_field).lean b/CommAlg/sayantan(poly_over_field).lean index 987fe93..48aa955 100644 --- a/CommAlg/sayantan(poly_over_field).lean +++ b/CommAlg/sayantan(poly_over_field).lean @@ -1,39 +1,87 @@ import CommAlg.krull import Mathlib.RingTheory.Ideal.Operations -import Mathlib.RingTheory.FiniteType import Mathlib.Order.Height import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.RingTheory.DedekindDomain.Basic -import Mathlib.RingTheory.Ideal.Quotient -import Mathlib.RingTheory.Ideal.MinimalPrime -import Mathlib.RingTheory.Localization.AtPrime import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic -import Mathlib.Order.ConditionallyCompleteLattice.Basic namespace Ideal +private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] : Set.chainHeight {(⊥ : α)} ≤ 1 := by + unfold Set.chainHeight + simp only [iSup_le_iff, Nat.cast_le_one] + intro L h + unfold Set.subchain at h + simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at h + rcases L with (_ | ⟨a,L⟩) + . simp only [List.length_nil, zero_le] + rcases L with (_ | ⟨b,L⟩) + . simp only [List.length_singleton, le_refl] + simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h + rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩ + exact absurd h1 (lt_irrefl _) + +/-- The ring of polynomials over a field has dimension one. -/ lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by - -- unfold krullDim rw [le_antisymm_iff] + let X := @Polynomial.X K _ constructor - · - sorry + · unfold krullDim + apply @iSup_le (WithBot ℕ∞) _ _ _ _ + intro I + have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance + by_cases I = ⊥ + · rw [← height_bot_iff_bot] at h + simp only [WithBot.coe_le_one, ge_iff_le] + rw [h] + exact bot_le + · push_neg at h + have : I.asIdeal ≠ ⊥ := by + by_contra a + have : I = ⊥ := PrimeSpectrum.ext I ⊥ a + contradiction + have maxI := IsPrime.to_maximal_ideal this + have sngletn : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by + intro P + constructor + · intro H + simp only [Set.mem_setOf_eq] at H + by_contra x + push_neg at x + have : P.asIdeal ≠ ⊥ := by + by_contra a + have : P = ⊥ := PrimeSpectrum.ext P ⊥ a + contradiction + have maxP := IsPrime.to_maximal_ideal this + have IneTop := IsMaximal.ne_top maxI + have : P ≤ I := le_of_lt H + rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this + have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this + have : P = I := PrimeSpectrum.ext P I this + replace H : P ≠ I := ne_of_lt H + contradiction + · intro pBot + simp only [Set.mem_setOf_eq, pBot] + exact lt_of_le_of_ne bot_le h.symm + replace sngletn : {J | J < I} = {⊥} := Set.ext sngletn + unfold height + rw [sngletn] + simp only [WithBot.coe_le_one, ge_iff_le] + exact singleton_bot_chainHeight_one · suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞) · obtain ⟨I, h⟩ := this have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by apply @le_iSup (WithBot ℕ∞) _ _ _ I exact le_trans h this have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _ - let X := @Polynomial.X K _ have : IsPrime (span {X}) := by - refine Iff.mpr (span_singleton_prime ?hp) primeX + refine (span_singleton_prime ?hp).mpr primeX exact Polynomial.X_ne_zero let P := PrimeSpectrum.mk (span {X}) this unfold height use P have : ⊥ ∈ {J | J < P} := by - simp only [Set.mem_setOf_eq] - rw [bot_lt_iff_ne_bot] + simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot] suffices : P.asIdeal ≠ ⊥ · by_contra x rw [PrimeSpectrum.ext_iff] at x