mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge branch 'GTBarkley:main' into main
This commit is contained in:
commit
96c91d90cc
3 changed files with 177 additions and 14 deletions
|
@ -83,6 +83,16 @@ height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀
|
|||
norm_cast at hc
|
||||
tauto
|
||||
|
||||
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
show (_ < _) ↔ _
|
||||
rw [WithBot.coe_lt_coe]
|
||||
exact lt_height_iff' _
|
||||
|
||||
lemma height_le_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 ≤ n ↔ ∀ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := by
|
||||
sorry
|
||||
|
||||
lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
||||
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
||||
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||||
|
@ -116,19 +126,103 @@ lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
|||
constructor <;> intro h
|
||||
. rw [←not_nonempty_iff]
|
||||
rintro ⟨a, ha⟩
|
||||
-- specialize h ⟨a, ha⟩
|
||||
specialize h ⟨a, ha⟩
|
||||
tauto
|
||||
. rw [h.forall_iff]
|
||||
trivial
|
||||
|
||||
|
||||
#check (sorry : False)
|
||||
#check (sorryAx)
|
||||
#check (4 : WithBot ℕ∞)
|
||||
#check List.sum
|
||||
#check (_ ∈ (_ : List _))
|
||||
variable (α : Type )
|
||||
#synth Membership α (List α)
|
||||
#check bot_lt_iff_ne_bot
|
||||
-- #check ((4 : ℕ∞) : WithBot (WithTop ℕ))
|
||||
-- #check ( (Set.chainHeight s) : WithBot (ℕ∞))
|
||||
|
||||
variable (P : PrimeSpectrum R)
|
||||
/-- The converse of this is false, because the definition of "dimension ≤ 1" in mathlib
|
||||
applies only to dimension zero rings and domains of dimension 1. -/
|
||||
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ (1 : ℕ) := by
|
||||
rw [krullDim_le_iff R 1]
|
||||
-- unfold Ring.DimensionLEOne
|
||||
intro H p
|
||||
-- have Hp := H p.asIdeal
|
||||
-- have Hp := fun h => (Hp h) p.IsPrime
|
||||
apply le_of_not_gt
|
||||
intro h
|
||||
rcases ((lt_height_iff'' R).mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
|
||||
norm_cast at hc3
|
||||
rw [List.chain'_iff_get] at hc1
|
||||
specialize hc1 0 (by rw [hc3]; simp)
|
||||
-- generalize hq0 : List.get _ _ = q0 at hc1
|
||||
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
|
||||
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
|
||||
-- have hq0 : q0 ∈ c := List.get_mem _ _ _
|
||||
-- have hq1 : q1 ∈ c := List.get_mem _ _ _
|
||||
specialize hc2 q1 (List.get_mem _ _ _)
|
||||
-- have aa := (bot_le : (⊥ : Ideal R) ≤ q0.asIdeal)
|
||||
change q0.asIdeal < q1.asIdeal at hc1
|
||||
have q1nbot := Trans.trans (bot_le : ⊥ ≤ q0.asIdeal) hc1
|
||||
specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime
|
||||
-- change q1.asIdeal < p.asIdeal at hc2
|
||||
apply IsPrime.ne_top p.IsPrime
|
||||
apply (IsCoatom.lt_iff H.out).mp
|
||||
exact hc2
|
||||
--refine Iff.mp radical_eq_top (?_ (id (Eq.symm hc3)))
|
||||
end Krull
|
||||
|
||||
#check {J | J < P}.le_chainHeight_iff (n := 4)
|
||||
section iSupWithBot
|
||||
|
||||
variable {α : Type _} [CompleteSemilatticeSup α] {I : Type _} (f : I → α)
|
||||
|
||||
#synth SupSet (WithBot ℕ∞)
|
||||
|
||||
protected lemma WithBot.iSup_ge_coe_iff {a : α} :
|
||||
(a ≤ ⨆ i : I, (f i : WithBot α) ) ↔ ∃ i : I, f i ≥ a := by
|
||||
rw [WithBot.coe_le_iff]
|
||||
sorry
|
||||
|
||||
end iSupWithBot
|
||||
|
||||
section myGreatElab
|
||||
open Lean Meta Elab
|
||||
|
||||
syntax (name := lhsStx) "lhs% " term:max : term
|
||||
syntax (name := rhsStx) "rhs% " term:max : term
|
||||
|
||||
@[term_elab lhsStx, term_elab rhsStx]
|
||||
def elabLhsStx : Term.TermElab := fun stx expectedType? =>
|
||||
match stx with
|
||||
| `(lhs% $t) => do
|
||||
let (lhs, _, eq) ← mkExpected expectedType?
|
||||
discard <| Term.elabTermEnsuringType t eq
|
||||
return lhs
|
||||
| `(rhs% $t) => do
|
||||
let (_, rhs, eq) ← mkExpected expectedType?
|
||||
discard <| Term.elabTermEnsuringType t eq
|
||||
return rhs
|
||||
| _ => throwUnsupportedSyntax
|
||||
where
|
||||
mkExpected expectedType? := do
|
||||
let α ←
|
||||
if let some expectedType := expectedType? then
|
||||
pure expectedType
|
||||
else
|
||||
mkFreshTypeMVar
|
||||
let lhs ← mkFreshExprMVar α
|
||||
let rhs ← mkFreshExprMVar α
|
||||
let u ← getLevel α
|
||||
let eq := mkAppN (.const ``Eq [u]) #[α, lhs, rhs]
|
||||
return (lhs, rhs, eq)
|
||||
|
||||
#check lhs% (add_comm 1 2)
|
||||
#check rhs% (add_comm 1 2)
|
||||
#check lhs% (add_comm _ _ : _ = 1 + 2)
|
||||
|
||||
example (x y : α) (h : x = y) : lhs% h = rhs% h := h
|
||||
|
||||
def lhsOf {α : Sort _} {x y : α} (h : x = y) : α := x
|
||||
|
||||
#check lhsOf (add_comm 1 2)
|
|
@ -77,12 +77,25 @@ lemma containment_radical_power_containment :
|
|||
rintro ⟨RisNoetherian, containment⟩
|
||||
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
|
||||
specialize RisNoetherian (Ideal.radical I)
|
||||
rcases RisNoetherian with ⟨S, Sgenerates⟩
|
||||
-- rcases RisNoetherian with ⟨S, Sgenerates⟩
|
||||
have containment2 : ∃ n : ℕ, (Ideal.radical I) ^ n ≤ I := by
|
||||
apply Ideal.exists_radical_pow_le_of_fg I RisNoetherian
|
||||
cases' containment2 with n containment2'
|
||||
have containment3 : J ^ n ≤ (Ideal.radical I) ^ n := by
|
||||
apply Ideal.pow_mono containment
|
||||
use n
|
||||
apply le_trans containment3 containment2'
|
||||
-- The above can be proven using the following quicker theorem that is in the wrong place.
|
||||
-- Ideal.exists_pow_le_of_le_radical_of_fG
|
||||
|
||||
-- how to I get a generating set?
|
||||
|
||||
-- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is
|
||||
--
|
||||
-- the same as the dimension as a vector space over R/I,
|
||||
lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I]
|
||||
: I • (⊤ : Submodule R M) = 0
|
||||
→ Module.length R M = Module.rank R⧸I M⧸(I • (⊤ : Submodule R M)) := by sorry
|
||||
|
||||
-- Does lean know that M/IM is a R/I module?
|
||||
|
||||
-- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R.
|
||||
-- M is a finite R-mod and I^nM=0. Then length of M is finite.
|
||||
|
|
|
@ -25,11 +25,11 @@ variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
|||
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||
|
||||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
noncomputable def krullDim (R : Type _) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
|
||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||
lemma krullDim_def (R : Type _) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||
lemma krullDim_def' (R : Type _) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||
|
||||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||
|
||||
|
@ -42,13 +42,13 @@ lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤
|
|||
lemma krullDim_le_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||
|
||||
lemma krullDim_le_iff' (R : Type) [CommRing R] (n : ℕ∞) :
|
||||
lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||
|
||||
lemma le_krullDim_iff (R : Type) [CommRing R] (n : ℕ) :
|
||||
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
|
||||
|
||||
lemma le_krullDim_iff' (R : Type) [CommRing R] (n : ℕ∞) :
|
||||
lemma le_krullDim_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
|
||||
|
||||
@[simp]
|
||||
|
@ -94,10 +94,16 @@ lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
|||
. rw [h.forall_iff]
|
||||
trivial
|
||||
|
||||
lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
||||
lemma krullDim_nonneg_of_nontrivial (R : Type _) [CommRing R] [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
||||
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
||||
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||||
use k
|
||||
|
||||
lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||
constructor <;> intro h
|
||||
. intro I
|
||||
sorry
|
||||
. sorry
|
||||
|
||||
@[simp]
|
||||
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||||
|
@ -158,8 +164,58 @@ lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D =
|
|||
exact dim_field_eq_zero
|
||||
|
||||
#check Ring.DimensionLEOne
|
||||
-- This lemma is false!
|
||||
lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
||||
|
||||
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
rcases n with _ | n
|
||||
. constructor <;> intro h <;> exfalso
|
||||
. exact (not_le.mpr h) le_top
|
||||
. tauto
|
||||
have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by
|
||||
symm
|
||||
show (n + 1 ≤ m ↔ _ )
|
||||
apply ENat.add_one_le_iff
|
||||
exact ENat.coe_ne_top _
|
||||
rw [this]
|
||||
unfold Ideal.height
|
||||
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
||||
rw [{J | J < 𝔭}.le_chainHeight_iff]
|
||||
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
||||
constructor <;> rintro ⟨c, hc⟩ <;> use c
|
||||
. tauto
|
||||
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
|
||||
norm_cast at hc
|
||||
tauto
|
||||
|
||||
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
show (_ < _) ↔ _
|
||||
rw [WithBot.coe_lt_coe]
|
||||
exact lt_height_iff'
|
||||
|
||||
/-- The converse of this is false, because the definition of "dimension ≤ 1" in mathlib
|
||||
applies only to dimension zero rings and domains of dimension 1. -/
|
||||
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ (1 : ℕ) := by
|
||||
rw [krullDim_le_iff R 1]
|
||||
intro H p
|
||||
apply le_of_not_gt
|
||||
intro h
|
||||
rcases (lt_height_iff''.mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
|
||||
norm_cast at hc3
|
||||
rw [List.chain'_iff_get] at hc1
|
||||
specialize hc1 0 (by rw [hc3]; simp)
|
||||
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
|
||||
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
|
||||
specialize hc2 q1 (List.get_mem _ _ _)
|
||||
change q0.asIdeal < q1.asIdeal at hc1
|
||||
have q1nbot := Trans.trans (bot_le : ⊥ ≤ q0.asIdeal) hc1
|
||||
specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime
|
||||
apply IsPrime.ne_top p.IsPrime
|
||||
apply (IsCoatom.lt_iff H.out).mp
|
||||
exact hc2
|
||||
|
||||
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 := by
|
||||
rw [dim_le_one_iff]
|
||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||
|
|
Loading…
Reference in a new issue